%Conference and

ngrmermg

COMPATIBILITY ISSUES IN DEEP LEARNING SYSTEMS:
PROBLEMS AND OPPORTUNITIES

Jun Wang?!, Guanping Xiao?, Shuai Zhang?, Huashan Lei!,
Yepang Liu?, Yulei Sui3

Nanjing University of Aeronautics and Astronautics, China
2Southern University of Science and Technology, China

3University of New South Wales, Australia

05/12/2023 San Francisco, USA

Related Work

Traditional Software

* Mahmud T et al. Detecting Android API Compatibility Issues With
API Differences. [TSE 2023]
* Xavier L et al. Historical and Impact Analysis of API Breaking

Changes: A Large-Scale Study. [SANER 2017]

Deep Learning Systems: Java

Linux Web
A4
AR _ A

4 Data-Driven

s npm
€ Require substantial

computational resources

Related Work

Deep Learning Field

* Humbatova N et al. Taxonomy of Real Faults in Deep Learning
Systems. [ICSE 2020]

* Islam M J et al. A Comprehensive Study on Deep Learning Bug
Characteristics. [ESEC/FSE 2019]

¢ Comprehensive taxonomies

4 Library API Evolution

4 Dependency conflict

Motivation

Different components of deep learning systems have complex interactions
and asynchronous evolution.

from keras.layers import Dense

—
from keras.models import Sequential -
core Program import tensorflow as tf -
import numpy as np COde Data
Python P

1F TensorFlow [Keras [l pandas

Third-party Librar e
Party Y Caffe © PyTorch theano \jz: Numpy

Low-level Library <A NVIDIA =
CUDA/cuDNN System libraries

Development Tool w @ @

Bazel GCC Pycharm
]]
os = O
Windows Linux macOS
= 8
Hardware 3
CPU GPU TPU

Motivation Examples

modulethon.keras.datasets.fashion_mnist' has no attribute TensorFlow: “moduleTensorflowhas no attribute

'load_data’

[

'merge_all_summaries

Asked 6 years, 8 months ago Modified 4 years, 2 months ago Viewed 11k times

Acked 5 years, 3 months ago Modified 2 yearsago Viewed 18k times
- Very similar to Keras + tensorflow gives the error “no attribute ‘control flow ops™, from the
Convolutional autoencoder example from https://blog.keras.io/building-autoencoders-in-
I am currently following this intro tutorial on the Keras website: keras.htm | get the error
A y 9 _ € feras Web: The Overflow Blog >
https://www.tensorflow.org/tutorials/keras/basic classification A P
v [...]Jlib/python3.5/site-packages/keras/callbacks.py in _set_model(self, model)
5 LR E u7g tf.histogram_summary('{}_out’.format(layer),
. . . - . . » N INTurve intrg u79 layer. output)
Several steps in | run into this error after callind(fashion_nnist. load_data() embeddings —o 1 V3 o] & . o S T
ug1 if self.write_graph:
v £ MinEE us2 if parse_version(tf.__version__) >= parse_version('0.8.6'):
= 2
AttributeError: module 'tensorflow' has no attribute 'merge all summaries'

AttributeError: module 'tensorflow.python.keras.datasets.fashion_mnist' has no attril helping develop

PyTorch and TensorFlow object detection - evaluate - object of type <class
‘numpy.floaté4'> cannot be safely interpreted as an integer

Asked 3 years, 11 months ago Modified 3 years, 11 months ago Viewed 3k times

13

l@#3%" &

| finally figured this out after aboun it, as it turns out numpy 1.18.0, which was released
5 days ago as of when I'm writing this, breaks the evaluation process for both TensorFlow and

PyTorch object detection. To make a long story short the fix is:

sudo -H pip3 install numpy==1.17.4

Research Questions

RQ1. What types of compatibility 1ssues are frequently exposed in
DL systems?

RQ2. What are the root causes of DL compatibility issues and how
do developers fix them?

RQ3. How far are we from automatically detecting and fixing DL
compatibility 1ssues?

Contribution

Dataset

=

Empirical Study

P

Tool Survey

Methodology

Data Collection and Classification

Dataset: stackoverflow.com-Posts. 7z, stackoverflow.com-Tags.7z

Filtering Rules: (1) question posts, (2) open for discussion, (3) have accepted answer

@12 Keywords, ©3 Frameworks

|1F TensorFlow 79,018
F 12 Keywords

Keras 48,581 cuda typeerror importerror attributeerror

O P},-fTDrCh 18,764 cudnn exception compatible modulenotfounderror
| Caffe 2 845 version evolution compatibility runtimeerror
theano 2,447

DL compatibility

: Mining rules Extract posts Mamually labeling N

: Q j { \ 1ssues classification -

i stackoverflow i

! 23,020,127 posts 3,072 posts: 352 posts

8

Methodology

Data Collection and Classification

CORE-TPL

Classification criteria:

Stage:

Yes R
Execution

(1) question description;

A DchmpatibiIity Symptom:
@ answers; é issue? - 4’[Breaking.

(TensorFlow+)

Root Cause:
API Incompatibility

(@) users’ comments. Sofution
Measure metrics:

Version Change
Cohen’s Kappa coefficient

NN N N N

DL compatibility

Mining rules Extract posts 1 Manually labeling ®. s

A _ r \ 1ssues classification .5 :
N Sae I | — | " — e

stack overflow ! o [i

i S— i

23,020,127 posts 3.072 posts 352 posts ;

Results Analysis

RQ1. Types, Stages and Symptoms

DL Compatibility Issues
(352)

v
CORE-TPL TPL-TPL TPL-LLL TPL-Python
(115, 32.7%) (88, 25.0%) (59, 16.8%) (33, 9.4%)
v v v v v
TPL-Hardware TPL-OS TPL-DEV LLL-Hardware Others
(22, 6.2%) (12, 3.4%) (10, 2.8%) (5,1.4%) (8, 2.3%)

CORE: Core Program, TPL: Third-party Library, LLL: Low-level Library, DEV: Development Tool, OS: Operating System

Answer to RQ1: CORE-TPL is the most frequent type of DL compatibility
issues. TPL-TPL and TPL-LLL are the second the third types frequently
exposed.

10

Results Analysis

RQ1. Types, Stages and Symptoms

Table 2: Distribution of Stages and Types

Type Installation | Execution | Total
CORE-TFL 1] 115 115
TPL-TFL 5 83 83
TPL-LLL 3 56 59
TPL-Python 28 5 33
TPL-Hardware 1 21 22
TPL-O5 & (i 12
TPL-DEV & 4 10
LLL-Hardware 2 3 5
Others 1 7 8
Total 52 300 352

Answer to RQ1: Most of DL
compatibility issues were exposed
during the execution stage. CORE-
TPL, TPL-TPL, TPL-LLL, and TPL-
Hardware are prone to occur during
execution, while TPL-Python and
TPL-DEV are likely to appear in the
installation.

Symptoms

Low Perf 28 8% Unexpected Behavior, 3, 1%
ow Performance, 28, 8%

Breaking, 321,
91%

Answer to RQ1: Most of DL compatibility
issues have a breaking impact on the
installation stage or execution stage of DL
systems.

11

Results Analysis

RQ2. Root Causes and Solutions

RC1: API Incompatibility (192/352).

RC2: Unsupported Component (UC) (108/352).

RC3: Version Mismatch Between Compiled and Runtime Libraries
(VMCRL) (52/352).

ucC, 108,

30.7%

‘\VMCRL, 52,
14.8%

APl Incompatibility,
192, 54.5%

/

12

Results Analysis

RQ2. Root Causes and Solutions

 RCI1: API Incompatibility (192/352).

* Version Mismatch Between CORE and Libraries’ APIs (VMCL) (115/192)

installed TensorFlow 0.12-
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_, logits=y)

TypeError: sigmoid_cross_entropy_with_logits() got an unexpected keyword argument 'labels'
The keyword argument ‘labels’ only exists
in TensorFlow 1.0.0+

* Version Mismatch Between Libraries’ APIs (VMLL) (77/192)

installed TensorFlow 1.2.1, Keras 2.1.3
File "main.py", line 84, in build_discriminator
model.add(LeakyReLU(alpha=0.2))

File "/opt/libraries/anaconda2/lib/python2.7/site-packages/keras/ backend/ tensorflow_backend.py",

line 2918, in relu
x = tf.nn.leaky_relu(x, alpha) The function leaky_relu was added to

TensorFlow 1.4. 13

Results Analysis

RQ2. Root Causes and Solutions

* Version Change.

This error is being raised because the loader cannot find version 7.0 of the CUDA runtime on your

F .
system. TensorFlow requires CUDA 7.0.
6
From the path in your question { fusr/local/cuda-5.5/...) it looks like you have CUDA 5.5
- installed. The solution is to upgrade your CUDA runtime to version 7.0, which is available from
NVIDIA here.
N Upgrade your CUDA runtime to version 7.0
Share Follow
v p——
keras 2.0.0

* Code Change.
* Change API Merge, Reshape

* Change Import

i Change import
* Change Build

keras 2.0.0
from keras.layers import Merge

from keras.layers.core import Dense, Dropout, Activation,

Wrong import |
location x

Right import |
location

14

Results Analysis

RQ2. Root Causes and Solutions

Table 6: Distribution of Solutions to API Incompatibility

. VMCL
Solution — T VMLL | Total
Version Change 31 6 57 04

Chﬂng&' API 9 40 1 50
Code Change | Change Import g 22 19 49

Answer to RQ2: For compatibility issues
caused by VMCL, forward-incompatible issues
tend to be fixed by changing the TPL version,
while backward-incompatible issues tend to be
repaired by changing the code. In addition,
most of issues caused by VIVILL were fixed by
version change.

Table 7: Distribution of Solutions to UC and VMCRL
Change Build 0o | 0 | 0 0 - °

Solution UC | VMCRL | Total
Version Change 76 52 128
Change API 1 0 1
Code Change | Change Import | 0 0 0
Change Build | 15 0 15

Answer to RQ2: Most of the issues were
caused by UC and all VMCRL-induced
issues were solved by changing the
component version.

15

Results Analysis

RQ3. How far are we from automatically detecting and

fixing DL compatibility 1ssues?

-P & dependency conflicts

[ICSE 18-23 —

Collect papers — Filter papers
| ASE 18228 -“ == | @ & API evolution >

| FSE18-22 & 1,779 papers

L ﬁ & compatibility issues

Python related topics

IR 4

9 papers
Examining
references
and citations

OIibrary API evolution } ‘ Eldentlfy works

detection and repair
of dependency
conflicts) 1 tool, 14 papers

2 categories

Tool Collection

16

Results Analysis

RQ3. How far are we from automatically detecting and
fixing DL compatibility 1ssues?

Table 9: Detection and Repair of Dependency Conflicts

. . 1 Tool Infer TPL | Infer Python | Infer LLL

Table &: Library API Evolution PyEGS [124] - 7 7

Tool Extract Used API|[Extract TPL API|Match API|Detect Changes|Repair API DockerizeMe [63] vy v
AexPy [44] v v SnifferDog [110] v
PyCompat [129] v v v v pipregs [52] v
DLocator [109] v v v PyDFix [84] v
MLCatchUp [60] v v v v V2 [64] v
APIScanner [103] v v Watchman [111] v
Relancer [131] v v PyCRE [42] v
smartPip [106] v

Answer to RQ3: Of the six tools related to library APl evolution, none of them can fully
realize the entire automation process from detection to repair of DL compatibility issues
caused by APl incompatibility. For the resolution of dependency conflicts in Python programs,
nine tools attempt to fix dependency conflicts induced by TPL-TPL, but only a few of them
can infer the incompatibilities caused by the Python interpreter versions and system libraries.
Currently, none of them can detect and fix compatibility issues caused by CUDA/cuDNN
which are commonly used in DL systems.

17

Implications

#1: Ensuring Consistency Between API Usage and Installed Library Versions.

#2: Early Determination of Component Versions.

#3: Challenges in Automated Detection and Repair of API Evolution Issues.

#4: Challenges in Automated Detection and Resolution of Incompatible Component
Versions.

18

Future Work

G Automatically detect DL compatibility issues

a Repair DL compatibility issues

%Conference and
ngm-?eermg

ware

:i;ii ?

Thank you for your listening!

Q&A

20

05/12/2023 San Francisco, USA

	Compatibility Issues in Deep Learning Systems: Problems and Opportunities
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	Thank you for your listening!

