

Experience Report: Fault Triggers in Linux Operating System: From Evolution Perspective

Guanping Xiao, Zheng Zheng*, Beibei Yin, Kishor S. Trivedi, Xiaoting Du, Kaiyuan Cai

Oct. 24, 2017 · Toulouse, France

Motivations

An operating system (OS) provides operating environments for software. Thus, the assurance of high reliability of an OS is critical.

Linux has put out more than 1300 releases ranging from versions 1.0 to 4.1 over the past 20 years

Motivations

It is necessary to explore the characteristics of Linux bug data from the evolution perspective. For instance,

Outline

- 1
 - Bug Data Collection and Classification
- 2
- **Evolution of Bug Type Proportions**
- 3
- **Evolution of Regression Bugs**
- 4
- Bug Types' Time to Fix
- 5
- **Bug Types' Network Characteristics**

Outline

- Bug Data Collection and Classification
- **Evolution of Bug Type Proportions**
- **Evolution of Regression Bugs**
- 4 Bug Types' Time to Fix

1

2

3

5

Bug Types' Network Characteristics

Bug Data Collection

Bug Classification

> Bug types: **Bohrbug** (**BOH**) and **Mandelbug** (**MAN**).

Bug types: Bohrbugs and Mandelbugs: subtypes

Manual classification procedure

Bug Classification

ID	Туре	Description
6045	NAM/TIM	"Using the aic94xx/sas_class driver,intermittent
		panic/hang on boot due to a race condition
		between device discovery of the root disk and an
		attempt to mount the root file system"
7968	BOH	"After booting (and during booting) the keyboard
		LEDs (NumLock, CapsLock and ScrollLock)
		don't work (they're always off)."
11805	NAM/ENV	"mounting XFS produces a segfaultWhen there is
		no memory left in the system, xfs_buf_get_noaddr()
		can fail."
12684	NAM/LAG	"After a suspend/resume, and a second suspend, the
		machine refuses to resume this could be rectified
		by forcibly saving and restoring the ACPI non-
		volatile state"
50181	ARB/MEM	"After 20 hours of uptime, memory usage starts
		going up"

Some examples of classified bugs

Outline

Bug Data Collection and Classification

3

5

1

Evolution of Bug Type Proportions

Evolution of Regression Bugs

4 Bug Types' Time to Fix

Bug Types' Network Characteristics

Overview of Bug Type Proportions (a) each bug BOH (a) NAM type among ARB UNK 1386 (31.66%) the 4378 2444 (55.82%) actual bugs 205 (4.68%) 343 (7.83%) MEM (b) ſМ (c) ENV STO 506 (36.51%) LAG NUM SEQ LOG 141 (68.78%) NAU TOT ARU 16 (7.8%) 516 (37.23%) 12 (5.85%) 265 (19.12%) 11 (5.37%) 3 (1.46%) 89 (6.42%)^{10 (0.72%)} 22 (10.73%) (b) NAM subtypes (c) ARB subtypes

More than 50% of actual bugs are BOHs > NAMs' major subtypes: TIM, ENV and LAG > ARBs' major subtype: MEM

How do proportions of bug types in Linux evolve over versions or time?

Comparison across four selected versions

The proportions of BOHs and MANs and their evolution trends are different among different versions.

Evolution of bug type proportions of selected products

The proportions of BOHs, NAMs, ARBs and their evolution trends are different among different products.

Outline

- **1** Bug Data Collection and Classification
 - **Evolution of Bug Type Proportions**
- 3

Δ

5

2

- **Evolution of Regression Bugs**
- Bug Types' Time to Fix

Bug Types' Network Characteristics

Evolution of Regression Bugs

Regression bug: a bug that causes a normal feature to stop working after a certain event (e.g., bug fixes, new feature work, etc.).

ID	Туре	Description
8736	NAM/TIM	"Here is another scenario I bumped onto -
		qdisc_watchdog_cancel() and qdisc_restart() deadlock
		Please try reverting commit 1936502d0. This one
		is a regression in 2.6.22"
11329) BOH	"in git1 and previous, cpu0_vid is reported as 1475
		(which is correct). Since git2, it is reported, as 725"

Examples of regression bugs

How does the proportion of regression bugs in Linux evolve over versions or time?

Evolution of Regression Bugs

Overview of The Proportion of Regression Bugs

Correlation *lift* between **bug types** and **regressions**

(BOH	NAM	ARB
regression	1.09	0.91	0.58
non-regression	0.91	1.09	2.00

- > More than 50% of the classified bugs are regression bugs.
- > **Regression bugs** are more likely **BOHs**, while **non-regression bugs** are more likely **MANs**.

Evolution of Regression Bugs

Evolution of proportions of regression bugs

Possible reasons: introduction of new features and bug fixes.

Outline

- **1** Bug Data Collection and Classification
 - **Evolution of Bug Type Proportions**
- 3

2

- **Evolution of Regression Bugs**
- Bug Types' Time to Fix

5

4

Bug Types' Network Characteristics

Bug Types' Time to Fix

Average time to fix

MANs > BOHs

Bug type	Average time to fix (days)	Standard deviation
BOH	218.63	360.72
MAN	254.22	374.22

Comparison of time to fix for bug types

A simplify life cycle depiction of a "CLOSED" and "CODE_FIX" bug report.

Outline

- **1** Bug Data Collection and Classification
 - **Evolution of Bug Type Proportions**
 - Evolution of Regression Bugs
- 4 Bug Types' Time to Fix

5

2

3

Bug Types' Network Characteristics

"Scale-free" [Nature, 98']

"Small-world" [Science, 99']

Nodes: functions, **Edges**: function calls

Xiao, G., Zheng, Z., & Wang, H. (2017).
Evolution of Linux operating system network. Physica A: Statistical Mechanics and its Applications, 466, 249-258.

In one of our previous works, we explored the **evolution of LOS networks**, including **62 major versions** from **versions 1.0 to 4.1**.

Is there a network metric that can reflect the evolution of bug type proportions?

Large clustering coefficient

Low proportion of BOHs High proportion of MANs.

Clustering coefficient is used to measure the tendency of a network to form tightly connected neighborhoods.

The relationship between bug type proportions and clustering coefficient

Large clustering coefficient

Low proportion of BOHs High proportion of MANs.

Pearson correlation analysis between bug type proportions and clustering coefficient

	Clustering coefficient	p value
BOH	-0.68	0.000022
MAN	0.68	0.000022

Clustering coefficient is used to measure the tendency of a network to form tightly connected neighborhoods.

RQ1: What network metrics can be used to represent bug types' characteristics?

RQ2: What's the difference of bug types' characteristics based on network metrics?

The Analysis Procedure

> The Analysis Procedure

> The Analysis Procedure

> The Analysis Procedure

Difference of the **bug types' characteristics**

Findings:

 k_{sum} (BOHs) and k_{sum} (MANs) are significant different: k_{sum} (BOHs) < k_{sum} (MANs) k_{ave} (BOHs) and k_{ave} (MANs) are significant different: k_{ave} (BOHs) < k_{ave} (MANs) k_{max} (BOHs) and k_{max} (MANs) are significant different: k_{max} (BOHs) < k_{max} (MANs)

Clustering Coefficient: C

 C_{min} (BOHs) and C_{min} (MANs) are significant different: C_{min} (BOHs) > C_{min} (MANs)

$3 \quad \text{Closeness: } C_c$

 $C_{c_{ave}}$ (BOHs) and $C_{c_{ave}}$ (MANs) are significant different: $C_{c_{ave}}$ (BOHs) > $C_{c_{ave}}$ (MANs) $C_{c_{min}}$ (BOHs) and $C_{c_{min}}$ (MANs) are significant different: $C_{c_{min}}$ (BOHs) > $C_{c_{min}}$ (MANs)

Relevant Published Papers

[1] Gao, Y., Zheng, Z., & Qin, F. (2014). Analysis of Linux kernel as a complex network. Chaos, Solitons & Fractals, 69, 246-252.

Analyzed the core component of LOS as a complex network and showed that the large indegree nodes providing basic services would do more damage on the whole system at the time of intentional attacks.

[2] Wang, H., Chen, Z., Xiao, G., & Zheng, Z. (2016). Network of networks in Linux operating system. Physica A: Statistical Mechanics and its Applications, 447, 520-526.

Explored the coupling correlations among Linux components and analyzed the impact of system failures on networks

[3] Xiao, G., Zheng, Z., & Wang, H. (2017). Evolution of Linux operating system network. Physica A: Statistical Mechanics and its Applications, 466, 249-258.

Studied the evolution of 62 major releases of Linux kernel ranging from versions 1.0 to 4.1 on network perspective and revealed the characteristics of the structure and functionality evolution of Linux network.

Thank You!

Guanping Xiao: gpxiao@buaa.edu.cn Zheng Zheng: zhengz@buaa.edu.cn

