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Motivation

* Deep learning (DL) is widely used in various domains nowadays.

* Avreliable DL system is crucial, especially for safety-critical applications.
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Motivation

* For reproducibility and stability purposes of using DL systems, it is expected that DL
systems can have a deterministic behavior in identical training runs: under a fixed
software-level and hardware-level experimental condition, multiple training runs produce
the same model and result in identical evaluation results.

* Unfortunately, DL systems are usually nondeterministic, i.e., multiple identical training
runs can generate inconsistent models and yield different evaluation results.

* Software-level and hardware-level nondeterminism factors.

weight initialization GPU/CPU (rarely been studied)

shuffled batch ordering, etc.

Randomness




Motivation

Example: the expression e = a + b + c can be computed in two different ways:
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import tensorflow as tf

tf.constant(1./6.)
tf.constant(2./3.)
tf.constant(3./7.)

a

C

e a+b+c
sess = tf.Session()
result = sess.run(e)

Fig. 1.
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(1)e=(a+b)+c=1.2619048

(2)e=a+(b+c)=1.2619047
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e=a+ (b+c)
result: 1.2619047
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e=(a+b)+c
result: 1.2619048

Floating-point difference impacted by different computing orders.
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Experimental Framework
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Research Questions

 RQ1:
What'’s the impact of CPU multithreading on the effectiveness variance (e.g., accuracy) in training DL
systems?

* RQ2:
What’s the impact of CPU multithreading on the time variance in training DL systems?

* RQ3:
How many collected DL projects in GitHub clearly mentioned software and hardware requirements?



Contributions

An experimental framework based on VirtualBox for analyzing the impact of CPU multithreading
on training DL systems

Six findings obtained from our experiments and examination on GitHub DL projects

Five implications to DL researchers and practitioners according to our findings

Released the research data (https://github:com/DeterministicDeeplLearning)



https://github:com/DeterministicDeepLearning

Data Collection and Aggregation

To collect our research data, we manually search projects with more than 200 stars in
GitHub using two keywords, i.e., deep learning and neural network. After initial filtering,
we gather a total of 1,610 projects, as shown in TABLE |I.

TABLE 1
NUMBER OF SEARCHED PROJECTS IN GITHUB
Keyword #Stars  #Projects  Time Frame
deep learning =200 985 up to 19/01/21

neural network  >200 625 up to 03/02/21




Data Collection and Aggregation

 Data Clean (e.g., excluding non-DL projects)
« Examined DL Projects (e.g., networks, frameworks, and languages)
 Examine Requirements (software and hardware requirements)

TABLE 11
DISTRIBUTION OF NEURAL NETWORKS, FRAMEWORKS AND LANGUAGES
IN THE 245 COLLECTED PROJECTS

Network  #Projects %Projects Framework #Projects %Projects Language #Projects %Projects
CNN 143 584 TensorFlow 092 37.5 Python 220 898

ENN 50 204 PyTorch 38 237 A .
CNN/ENN 15 0.1 Keras (TensorFlow) 34 13.9 C++ 7 2.9

GAN 13 5.3 Caffe 20 8.2 JavaScript 3 1.2
Others 24 9.8 Theano 11 4.5 Others 7 2.8

Others 30 12.2
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Our Experimental Framework
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Fig. 2. Overview of our experimemal framework.

Host Machine:

Memory: 64 GB
Storage: 2 TB HDD

CPU: i9-9900K (8 cores 16 threads)

Host OS: Windows 10 Pro (20H2)

Virtual Machine:

CPU Threads: 1/2/6/12 Threads
Memory: 24 GB

Storage: 500 GB

Guest OS: Ubuntu 18.04.5 LTS Desktop
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Our Experimental Framework
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TABLE 111

FIXED-SEED SETTINGS FOR TENSORFLOW AND PYTORCH PROJECTS

TensorFlow (CPU)

PyTorch (CPU)

Setting

SEED Setting

SEED

random.seed(SEED)
np.random.seed(SEED)
tf.set_random_seed(SEED)

os.environ[ " PYTHONHASHSEED' |=str(SEED) 1

torch.manual_seed(SEED) 1
1 random.seed(SEED) 1
1 np.random.seed(SEED) 1
1

Control software-level randomness
e.g., Python/Numpy/TF random seed
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Our Experimental Framework
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experimental framework.

Fig. 2. Overview of o

Three types of identical training runs:
(1) default runs with model selection
(2) fixed-seed runs with model selection

(3) fixed-seed runs without model selection

v
ssssmmmmmnn®

Variance analysis:

Boxplots and statistics test
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Our Experimental Framework

* Details of examined DL projects
Five projects: two Keras, two TensorFlow, and one PyTorch

TABLE IV
EXAMINED GITHUB DL PROJECTS

No.  Project Framework Framework Version  Neural Network Application Domain Commit  #Stars
#1 saurabhmathur96/clickbait-detector [48]  Keras (TensorFlow)  1.2.1 (0.12.1) CNN Clickbait Headlines Detection 1b6ablb 467
#2 awni/ecg [41] Keras (TensorFlow)  2.1.6 (1.8.0) CNN Medical (Heart) Diagnosis c97bb96 403
#3 voicy-ai/DialogState Tracking [38] TensorFlow 1.14.0 RNN (MemN2N)  Chat Bot al02672 228
#4 zjy-ucas/ChineseNER [39] TensorFlow 1.2.0 RNN Chinese Named Entity Recognition  48e1007 1,470
#5 castorini/honk [40] PyTorch 1.4.0 CNN Keyword Spotting c3aae75 389
TABLE V
TRAINING SETTINGS OF EXAMINED PROJECTS

No. #Train #Val #Test #Epochs Optimizer Model Selection Metric #Runs

#1 8787 2930 2930 20 Adam ES (2) Accuracy 1,000

#2205 51 64 30 Adam ES (5) + Best Validation Loss Accuracy 30

#3 9,855 9978 10,018 200 Adam Best Validation Accuracy Accuracy 30

#4 10439 1,188 2,386 30 Adam Best Validation F1-score Fl-score 30

#5 4617 477 59 30 SGD Best Validation Accuracy Accuracy 30 13




Results and Analysis

- RQT: Impact of CPU Multithreading on Effectiveness Variance
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Fig. 4. Boxplots of accuracy variance of projects #1 and #2.

Finding #1: For the examined two Keras (with
TensorFlow backend) projects, the accuracy
variances obtained from default identical training
runs (without controlling random generators) have
no significant difference in different CPU
multithreaded environments. The nondeterminism
factors cause accuracy differences as large as 11.43%.
However, after controlling random generators, we
can observe the impact of CPU multithreading on the
accuracy variance (e.g., different training accuracy).



Results and Analysis

- RQT: Impact of CPU Multithreading on Effectiveness Variance

* Finding #1 (cont’d): Although variance still exists in fixed-seed identical runs,
some accuracy scores keep occurring in a single-threaded environment.

Single-threaded env: Single-threaded env:
89.39%-334 times 88.33%-358 times
0.92 0.92 0.92
%) > %)
3 0.88} 3 0.88} 3 0.88}
3 113 113 1
Q 0.84] Q 0.84/ Q 0.84|
< o< 2 |< ;
12 12 12
0-80— 250 500 750 1000 -°° 0 250 500 750 1000 O-°° 0 250 500 750 1000
Sequence Number Sequence Number Sequence Number
(a) Default w/ MS (b) Fixed w/ MS (¢) Fixed w/o MS

Fig. 5. Sorting of accuracy variance of project #1. -



Results and Analysis

- RQT: Impact of CPU Multithreading on Effectiveness Variance
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Finding #2: Similar to the Keras projects, for the examined
TensorFlow and PyTorch projects, default identical training
runs produce multiple models with different evaluation
results. However, fixed-seed identical training runs produce
deterministic evaluation results in the environment with
the same number of CPU threads. The deterministic
evaluation results of one project can be different across
different environments.
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Results and Analysis

- RQT: Impact of CPU Multithreading on Effectiveness Variance
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Fig. 7. Standard deviation (SD) calculated from training loss of fixed-seed
runs of projects #3-5.

Finding #2: Similar to the Keras projects, for the
examined TensorFlow and PyTorch projects, default
identical training runs produce multiple models with
different evaluation results. However, fixed-seed
identical training runs produce deterministic
evaluation results in the environment with the same
number of CPU threads. The deterministic evaluation
results of one project can be different across different
environments.
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Results and Analysis

- RQT: Impact of CPU Multithreading on Effectiveness Variance

o —— —— — -1
| User Code

| main.py:

| main()

I memn2n.py:

| MemN2NDialog.batch_fit()

TensorFlow Python Library (1.14.0)
+

session.py:
BaseSession.run()

session.py:
BaseSession._run()

session.py:
BaseSession._do_run()

session.py:
BaseSession._call_tf_sessionrun()

TensorFlow C++ Library (1.14.0)
+

pywarp_tensorflow.py:
tf_session.TF_SessionRun_wrapper()

Step #Thread=1 #Thread=2

1 8.56838989 8.56838989
850176239  8.50176239
842222214 842222214
833638000  8.33638000
835218311 8.35218811
829192734  8.29192734
821493816  8.21493816
8.25994015  8.25994015
BEM 2.22954845  8.22954941

(a) #3

O~V W

Fig. 8. Loss value differences in user and framework code for projects #3-5.

_——— e ————— — —

| User Code |
| main.py: |
[ train() [
I model.py: I e = |
I Model.run_step() |I" User code
D —| ————— 41 main.py: I
TensorFlow Python Library (1.2.0) I train() |
sessi;n.py: SN !
BaseSession.run() PyTorch Pythonl_ibrary (1.4.0)
loss.py:
session.py: CrossEntropyLoss.forward()

BaseSession._run()
functional.py:
session.py: cross_entropy()
BaseSession._do_run()
functional.py:

TensorFlow C++l_ibrary (1.2.0) nll_loss()

pywarp_tensorflow.py:

tf_session.TF_Run() PyTorch C++ Libr;ary (1.4.0)

Step #Thread=1 #Thread =2 e

1 86.26031494 86.26031494
2 10874924469 108.74924469 Step #Thread=1 #Thread =2
3 12657118225 126.57118225 1 2.50923109 250923109
I 27082257080 270.82260132 [l 2.49720502  2.49720478

(b) #4 (c) #5

Finding #3: The rounding errors of floating-point
numbers come from low-level implementations of
DL frameworks, i.e., the C++ library. Under different
CPU multithreaded environments, the rounding
errors are accumulated during the training process.
After some training steps, the values of training loss
become different.
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Results and Analysis

- RQT: Impact of CPU Multithreading on Effectiveness Variance
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Fig. 9. Accuracy variance of project #3 from 50-200 training epochs and

project #5 from 20-30 training epochs.
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* Finding #4: For fixed-seed identical training runs
without model selection, CPU multithreading causes
accuracy differences as large as 8.56%. Using model
selection can minimize the impact of CPU
multithreading on training DL systems. The max
accuracy differences are range from 0.0898% to
2.52% with model selection.
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Epochs

(d) Fixed w/o MS (#5)

30

TABLE VII
MAXIMUM ACCURACY DIFFERENCE OF PROJECTS #3 AND #5
SThreads Fixed w/ MS Fixed w/o MS

#3 (Epochs 61-74)  #5 (Epoch 25)  #3 (Epoch 132)  #5 (Epoch 23)

1 0.748852066 0.907718122 (0.748852066 0.921140969

2 0.748852066 0.932885885 0.664703534 0.835570455

6 0.748951887 0.932885885 0.748951887 0.835570455

12 0.748053504 0.922818780 (.748652426 0.895973146
Max Diff 0.000898383 0.025167763 (0.084248353 0.085570514 19




Results and Analysis

+ RQ2: Impact of CPU Multithreading on Time Variance

Finding #5: For the examined five DL projects, only one project shows that the training time would
decrease along with the increasing number of CPU threads. For most projects, using 2 threads would
be a better choice to obtain a faster training efficiency.
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Fig. 10. Boxplots of training time variance of projects #1 and #2.
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Results and Analysis

- RQ3: Proportions of DL Projects that Mentioned Software and Hardware Requirements

 Finding #6: Among the 245 collected GitHub DL projects, 90.6% of them provide
software-level requirements, while only 22.0% mention hardware-level requirements. For
the projects that have hardware requirements (54 projects), 94.4% present tested GPU
environments, while 14.8% list tested CPU environments.

TABLE X
PROPORTIONS OF SOFTWARE AND HARDWARE REQUIREMENTS OF THE
245 COLLECTED GITHUB DL PROJECTS
Software Requirements  Hardware Requirements

Provided

#Projects  %Projects  #Projects  %Projects
Yes 222 90.6 54 22.0
No 23 9.4 191 78.0

21



Implications for DL Researchers and Practioners

Implication #1: When training DL systems on CPU platforms, to obtain deterministic training
results, developers should control software-level nondeterminism factors (e.g., random
generators). Besides, practitioners should pay attention to the effectiveness variance under
different CPU multithreaded environments.

Implication #2: The effectiveness variance introduced by CPU multithreading could be huge,
in particular when training DL systems without using model selection techniques. To
minimize the impact of CPU multithreading on the effectiveness variance in training DL
systems, developers are suggested to use model selection methods (e.g., best validation
loss/accuracy). Moreover, to achieve deterministic DL systems, it is necessary to develop
mitigation techniques to eliminate the inconsistency of accuracy scores introduced by CPU
multithreading.
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Implications for DL Researchers and Practioners

Implication #3: Using more CPU threads for model training does not necessarily indicate
that we can achieve faster training efficiency. DL models with a default setting (e.g., using all
CPU threads) do not often take full advantage of computing capability of the underlying
hardware [55]. For obtaining a promising training time, developers are suggested to use
some auto-tuning tools (e.g., TensorTuner [35]) to fine-tune the built-in threading
configuration in DL frameworks (e.g., TensorFlow).

Implication #4: When optimizing CPU parallelism for training DL systems, developers should
pay attention to the potential impact on the effectiveness variance introduced by CPU
multithreading. For example, it would be necessary to consider the task as a multi-objective
optimization problem, i.e., minimize the training time and maximize the effectiveness (e.g.,
accuracy).
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Implications for DL Researchers and Practioners

Implication #5: Developers are suggested to mention hardware environments used for
model training and evaluation when releasing a DL project. In particular, if DL models are
trained on CPU platforms, developers should provide detailed CPU models, since the
number of threads used can affect model training and evaluation.
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Contributions

An experimental framework based on VirtualBox for analyzing the impact of CPU multithreading
on training DL systems

Six findings obtained from our experiments and examination on GitHub DL projects

Five implications to DL researchers and practitioners according to our findings

Released the research data (https://github:com/DeterministicDeeplLearning)
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Future Work

e Collect and examine more DL projects (models)

* Perform experiments on cloud platforms (e.g., using more powerful CPUs)



Thank you for your listening!

Q&A

Guanping Xiao

Email: gpxiao@nuaa.edu.cn
Homepage: https://guanpingxiao.github.io/
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