
2020 27th Asia-Pacific Software Engineering Conference (APSEC)

An Empirical Study of Code Deobfuscations on
Detecting Obfuscated Android Piggybacked Apps

Yanxin Zhang∗, Guanping Xiao?, Zheng Zheng†, Tianqing Zhu∗, Ivor W. Tsang∗, Yulei Sui∗
∗School of Computer Science, University of Technology Sydney, Australia

?College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
†School of Automation Science and Electrical Engineering, Beihang University, China

yanxin.zhang@student.uts.edu.au, gpxiao@nuaa.edu.cn, zhengz@buaa.edu.cn, {tianqing.zhu, ivor.tsang, yulei.sui}@uts.edu.au

Abstract—Android piggybacked malware (i.e., apps that
piggyback malicious code) are becoming ubiquitous in app stores.
Malware writers often use obfuscation techniques to obfuscate
piggybacked apps to evade detection by Android malware de-
tectors. Previous studies in this field have focused on the impact
of code obfuscations on the detection of piggybacked malware,
but the impact of code deobfuscation on detecting obfuscated
piggybacked apps has rarely been studied. Knowing about
the impact of code deobfuscation can provide useful insights
into obfuscated piggybacked apps and therefore the design of
resilient Android malware detectors. In this paper we conduct
an empirical study of code deobfuscations on detecting obfuscated
Android piggybacked apps, focusing on three types of malware
detectors: commercial anti-malware products, machine learning-
based detectors, and similarity-based detectors. We observe that
code deobfuscations can impact differently depending on the
malware detectors. For example, some deobfuscation strategies
can improve the precision of detecting obfuscated piggybacked
apps. Also we observe that the examined deobfuscation tools
(Simplify and Deguard) have a different impact on obfuscated
piggybacked apps after deobfuscations.

I. INTRODUCTION

As the world’s most popular mobile platform, the An-
droid operating system (OS) impacts significantly on many
people’s daily life, thus the interest in its security and security
enhancement is gaining increasing momentum in areas from
academia to industry [1, 2]. Android apps are written in Java
programming language, making them easy to be reversed by
development tools. For example, the Apktool is often used
to disassemble executable code and decode resource files of
Android apps [3]. Since Android allows self-signed certificate
apps, once an app is disassembled and decoded, its code and
resource files can be modified, resigned, and repackaged as
a new app. Worse, users feel free to install these unofficially
released apps, resulting in potential security issues.

Malware developers usually unpack benign and prefer-
ably popular apps for piggybacking code fragments with
malicious behaviours, as illustrated in Fig. 1. These apps are
referred to as piggybacked apps, and are widely available
in real-world markets, which is seriously threatening user
security and destroying the reputation of the developers of
the original apps. Zhou et at. [4] pointed out that 86% of
the 1,260 malicious application samples examined are piggy-
backed malicious apps. To protect users against these mali-
cious apps, various anti-malware detectors, such as VirusTotal
and SimiDroid, have been released to detect malware [5].

APK APK

Fig. 1. Illustration of Android piggybacked malware.

Unfortunately, piggybacked app developers normally use
code obfuscations to evade such detection. Code obfusca-
tion is a reorganization and reprocessing technology used
on previously released programs [6]. An obfuscation tech-
nique transforms the original program into a new one while
maintaining its functionality, but the obfuscation code makes
the decompilation difficult to figure out the true semantics
of the original program. Recent studies have shown that
code obfuscations used in piggybacked apps have caused a
significant decrease in the ability to accurately detect Android
malware [7, 8].

To overcome the challenge of detecting obfuscated An-
droid malware, researchers have developed deobfuscation tools
to identify obfuscated codes injected into apps by malware
writers. For example, Simplify [9], developed by Caleb Fen-
ton, uses a virtual machine sandbox for executing an app to
understand its behavior. Then, it tries to optimize the code so
that the decompiled code is simplified and easier for humans
to understand. Different from the work by Fenton, Bichsel et
al. [10] developed Deguard, a statistical deobfuscation tool for
Android. Deguard phrases the layout deobfuscation problem
of Android apps as a structured prediction in a probabilistic
graphical model for identifiers that are based on the occurrence
of names.

However, there is little empirical evidence on the im-
pact of code deobfuscations on detecting obfuscated Android
piggybacked apps. Such empirical knowledge can provide
useful insights for researchers and security engineers to better
understand the influences of obfuscation strategies and deob-
fuscation tools on Android malware detectors. Thus, such ev-
idence can guide the design of resilient and effective Android
malware detectors. Therefore, in this paper we perform a large-
scale empirical study of the impact of code deobfuscations on
detecting obfuscated Android piggybacked apps.

Fig. 2. Overview of our empirical study.

Fig. 2 shows an overview of our empirical study. First,
we generated obfuscated piggybacked apps using 1,399 pairs
of original piggybacked apps from [11] by utilizing different
obfuscation strategies. The generated obfuscated apps were
later deobfuscated to generate deobfuscated piggybacked apps.
To present a thorough analysis, we used three types of Android
malware detectors, including commercial anti-malware prod-
ucts, machine learning-based detectors, and similarity-based
detectors, as the targeted systems for detecting the generated
obfuscated/deobfuscated piggybacked apps. Finally, having
used 10 different strategies, we analyzed the precision of these
detectors to understand the impact of code deobfuscations.

This paper makes the following main contributions:
• To the best of our knowledge, this is the first work to

study the impact of code deobfuscations on detecting
obfuscated Android piggybacked apps.

• We have generated 11,378 obfuscated and deobfuscated
piggybacked apps from 1,399 original piggybacked apps
using 10 strategies.

• We have evaluated the precision of three types of Android
malware detectors, including commercial anti-malware
products (i.e., VirusTotal), machine learning-based detec-
tors (i.e., Drebin and CSBD), and similarity-based detec-
tors (i.e., Androguard and SimiDroid) on the generated
obfuscated and deobfuscated piggybacked apps.

II. BACKGROUND

A. Piggybacked Android Malware
Piggybacking refers to the behaviour that an unauthorized

developer adds, deletes, or makes no changes to the non-
core code of a benign Android app and signs the packaging
with an unauthorized key [11]. Piggybacked apps have two
characteristics. First, a piggybacked app is similar to the
original application’s core code, referring to the part after
removing external common code (e.g., third-party libraries).
This is because a piggybacked app needs to keep the function
of the origin app. Also, the hacked app must be resigned,
and this signature is generally not consistent with the original
signature (e.g., the information of the developers).

B. Obfuscation and Deobfuscation of Android Apps
Code obfuscation doesn’t make the code undecompiled.

On the contrary, it conducts transformation of the code on
structured code features (e.g., modifying program’s control-
flows) or on unstructured code features (e.g., renaming the
apps’ classes, methods, variables to meaningless names). In
this paper, we use four types of obfuscation strategies, i.e.,
control flow flattening, insert junk code, identifier obfuscation,
and string obfuscation, as shown in Table I.

Control Flow Flattening (CFF). This type of obfuscation
strategy represents that the control statements in java code
(e.g., “if”, “while”, “for”, and “do”), which are converted into
switch branch statements without changing the function of
the source code. The advantage of CFF is that it blurs the
relationship between the code blocks in the switch, increasing
the difficulty of analysis. This technique divides the method
into multiple basic blocks (case code blocks) and an entry
block and allows these basic blocks to have both a common
predecessor module and successor module to achieve flatten-
ing. The predecessor module mainly performs the distribution
of basic blocks, and the distribution is realized by changing
the switch variable. The successor module is used to update
the value of the switch variable and jump to the beginning of
the switch.

Insert Junk Code (IJC). This type of obfuscation strategy
inserts a set of useless bytes into an original program without
changing the original logic of the program. The program
will still run normally, but the disassembly tool will fail to
disassemble the inserted bytes, e.g., in a manner that the
disassembly tool reports an error when the first few bytes
of the normal instruction being recognized as an incomplete
instruction. Therefore, the inserted instructions are random and
incomplete. Note that these instructions must satisfy two con-
ditions. Firstly, the instructions are located in a path that will
never be executed when the program is running, and secondly
that these instructions are part of the legal instructions except
that they are incomplete instructions.

Identifier Obfuscation (IO). Identifier obfuscation is to
rename the packages, classes, methods, and variables in a
source program, and then replace them with meaningless iden-
tifiers, making it harder to crack the identifiers for analysis.

String Obfuscation (SO). To avoid the disassembled code
being easy to analyze and understood, more critical string
variables in the source program are often obfuscated. There
are two kinds of string obfuscation strategies, namely encoding
obfuscation and string encryption. Encoding obfuscation first
converts the string into a hexadecimal array or Unicode
encoding, and then restores it to a string when the string
is called. After encoding obfuscation takes place, a series of
numbers or garbled characters, which are difficult to analyze
directly, exist in the reverse direction. String encryption is
local encryption of the string, and then encode the ciphertext
into the source code. Furthermore, implementing a decryption
function as well as calling the decryption function decrypts
the ciphertext where it can be used.

Code deobfuscation is a reverse process of code ob-
fuscation. The code deobfuscation usually deobfuscates the
obfuscated according to three key aspects, as follows: (1)

2

TABLE I
OBFUSCATION STRATEGIES

Type Strategy Description

CFF
API REFLECTION Hides all APIs by Java reflections.
API INS Inserts invalid APIs between existing APIs.

IJC BYTECODE Inserts useless codes in the source code, such as defining a useless method, passing the class
variable in, then not processing or shifting the useless codes, which looks like complicated
codes, but actually same function.

IO

VARIABLE Renames the variable name in the source code, then replaces it with a meaningless identifier,
making it harder to crack this analysis.

PCM Obfuscate the package name in the same way as the variable name.
BENIGN CLASS Obfuscate the class name in the same way as the variable name.
RESOURCE IMAGE Modifies directly at the source level, then replaces the code and renames “icon.png” to

“a.png”, lastly hands it over to Android for compilation.
RESOURCE XML Modifies directly at the source level, then replaces the code and “R.string.name” in xml

file with “R.string.a”, and hands it over to Android for compilation.

SO
STRING Encrypts the string locally, then hardcodes the ciphertext into it. Lastly, decrypts it at

runtime.
BEN PERMISSION Encrypts the permission locally, hardcodes the ciphertext into it, and decrypts it at runtime.

readability. The purpose of deobfuscation is to make the
code readable. The simpler the code, the more readable it
is; (2) better understanding of program’s control- and data-
flows. This helps us to analyze the possible execution flow of
the program statically; and (3) getting context. the contextual
relevance of the program can help us better understand the
semantic of a program. Several attempts working on the
code deobfuscation of Android apps have been conducted.
DeGuard [10] was proposed to deal with layout obfuscation
introduced by ProGuard. The key idea is to summarize a
probabilistic model by learning unobfuscated apps on a large
scale and then use the model to recover the obfuscated code.
Also, Baumann et al. [12] used a similar approach to perform
ProGuard deobfuscation by code matching.

III. RESEARCH METHODOLOGY

A. Dataset and App Generation

1) Original Apps: We use the dataset, i.e., 1,497 pairs
of original/piggybacked Android apps, which were collected
from the work conducted by Li et al. [11]. In the work,
the authors first sent all apps to VirusTotal to collect their
associated anti-virus scanning reports. Then, based on the
results of VirusTotal, they classified the set of apps into
two subsets: one containing only benign apps and the other
containing only malicious apps. Then they compared all the
malicious apps and the benign apps according to the identity
packages. If the pair of apps that were compared had different
authors, they continued the comparison to establish whether
the SDK version is the same. Finally, they collected the
dataset of 1,497 app pairs, where each pair include an original
benign app and a piggybacked app with a malicious payload.
According to the provided hash values, we downloaded all
1,497 pairs of original/piggybacked Android apps.

2) Obfuscated Piggybacked Apps: Among the 1,497 app
pairs, there are some duplicates after our manual inspection.
The dataset has several benign apps corresponding to the same
piggybacked app. After filtering these duplicate piggybacked
apps, we obtained validated 1,399 pairs for our study. In order
to understand the impact of each obfuscation strategy, we used
AVPASS to obfuscate the validated 1,399 apps pairs with 10
obfuscation strategies (Table I). Table II shows the number of
obfuscated piggybacked apps generated for each obfuscation

strategy. Note that the numbers of obfuscated piggybacked
apps can be different for each strategy, since not all the
1,399 piggybacked apps can be successfully obfuscated by
the obfuscation strategies. For example, only 444 piggybacked
apps were successfully obfuscated using BYTECODE.

3) Deobfuscated Piggybacked Apps: To create deobfus-
cated piggybacked apps, we leveraged two general Android
deobfuscator, i.e., Simplify [9] and Deguard [10].

Simplify. The design of Simplify is inspired by dex-
oracle, in which the Dalvik virtual machine is simulated, and
the code is decompiled once executed [9]. After learning the
function, the decompiled code is simplified into a form that
the analyst can understand. Simplify includes two modules,
i.e., Smalivm and Simplify. Smalivm is the simulator module
of the Dalvik virtual machine and is mainly used for executing
Dalvik virtual machine, based on the input smali file, returns
all possible execution paths. The simplify module is the main
module used to solve the obfuscation, which is primarily based
on the analysis results of Smalivm. It simplifies the obfuscated
decompiled code and generates the easy-to-understand decom-
piled code. We used Simplify to generate the deobfuscated
piggybacked apps, using the obfuscated apps (Table II). The
number of deobfuscated piggybacked apps by Simplify is
shown in Table III.

Deguard. DeGuard is a new system for statistical deob-
fuscated Android APKs [10]. It deobfuscates an APK with
large-scale learning and then summarizes a probability model
to identify the code through its probability model. Using
these models, DeGuard restores important information in the
Android APK, including method and class names, as well
as third-party libraries. Deguard then reveals string decoders
and classes that handle sensitive data in Android malware.
The process is divided into three steps: (1) Generating a
dependency graph, where each node represents the element
to be renamed, and each line represents a dependency; (2)
Exporting restriction rules, which guarantees the APK being
replied is a normal APK and keeping the same semantics as
the original APK; (3) Predicting and recovering the original
name of an obfuscated element according to the weighting
provided by the probability model.

We wrote a python script with selenium [13] in order
to use Deguard. Python script automatically opens the official

3

TABLE II
NUMBER OF OBFUSCATED APPS

Strategy Number Strategy Number
STRING 1,130 BE CLASS 1,372
VARIABLE 1,148 API INS 933
PCM 1,311 BEN PER 1,369
BYTECODE 444 API REF 1,282
RESOURCE IMAGE 1,370 RESOURCE XML 1,370

TABLE III
NUMBER OF DEOBFUSCATED APPS (SIMPLIFY)

Strategy Number Strategy Number
STRING 1,130 BE CLASS 1,370
VARIABLE 1,148 API INS 933
PCM 1,311 BEN PER 1,369
BYTECODE 444 API REF 933
RESOURCE IMAGE 1,370 RESOURCE XML 1,370

Deguard website and then uploads the piggybacked apps. Once
the deobfuscation process has taken place, it automatically
downloads the generated deobfuscated apps, which has been
named with a suffix, i.e., the hash value of the original app.
Because the Deguard tool is not open-source and its website
does not support batch operation to handle a set of apps.
Uploading each individual piggybacked app to its website is
very slow and time consuming. Therefore, for each strategy,
we randomly select 50 obfuscated apps to generate their
deobfuscated apps, to make our evaluation as fair as possible.

B. Targeted Systems

To study the impact of code deobfuscation on detecting
obfuscated piggybacked apps, we selected three types of An-
droid malware detectors, including commercial anti-malware
products, machine learning-based detectors, and similarity-
based detectors.

1) Commercial Anti-malware Products: VirusTotal. As
shown in Fig. 3, VirusTotal is a website (founded in 2004)
which provides free suspicious file analysis services. Different
from traditional anti-virus software, VirusTotal scans files
through multiple commercially available anti-virus engines
and then uses a variety of anti-virus engines to inspect the
files uploaded to determine if the files are infected by viruses,
worms, trojans or other types of malware. This greatly reduces
the chances of the anti-virus software, either missing or not
detecting a virus. Its detection rate is significantly better than
when a single anti-virus product is used. Whilst no anti-
virus software is 100% safe, the VirusTotal test results are
more comprehensive and much more likely to be correct
than if a single anti-virus engine was used. In addition, the
compressed file structure (compressed file), file type - MD5,
SHA1, SHA256 - can also be analyzed. In this study, after
obfuscation and deobfuscation, if the number of anti-virus en-
gines in VirusTotal that detect malware variants is greater than
that of detecting original malware, the detection precision is
considered to be increased, otherwise, the detection precision
is considered to be decreased.

2) Machine Learning-Based Detectors: Drebin. Drebin
is a lightweight method to detect Android malware [14]. It
automatically infers the detection mode and directly identifies
malware on mobile phones. First, Drebin collects as many
features as possible from the application with static analysis.

Fig. 3. Example of VirusTotal.

The collection of features mainly includes four sets of features
from the manifest file (i.e., permissions, hardware components,
APP components, and filtered intents) and four sets of features
from disassembled code (i.e., restricted API calls, user per-
missions, suspicious API calls, and network addresses). These
features are then organized into a set of strings, embedded in
the vector space, and geometrically analyzed the patterns and
combinations of these features geometrically analyzed. Finally,
the embedded feature set is used to identify Android malware.
Drebin learns a linear SVM classifier to discriminate between
benign and malicious apps.

CSBD. CSBD is a method containing a python-based
reimplementation of the Android malware detection [15].
CSBD uses control flow graph (CFG) signatures of methods in
Android apps to detect malicious apps. Firstly, CSBD performs
static analysis of the Android app’s bytecode to extract a
representation of the program’s CFG, which is then expressed
as character strings so that the similarity between Android
apps can be established. This derived string representation of
the CFG is an abstraction of the app’s code, which retains
information about the structure of the code but discards low-
level details such as variable names or register numbers. Next,
after having the abstract representation of an Android app’s
CFG, CSBD collects all basic blocks that compose and refer
them as the features of the app. A basic block is taken as a
sequence of instructions with only one entry point and one
exit point, which represents the smallest piece of the app. By
leveraging machine learning techniques and learning from the
training dataset, the model exposes those basic blocks that
statistically appear more frequently in Android malware.

3) Similarity-Based Detector: Androguard. Androguard
is an open-source Android app analysis tool [16]. It imple-
ments a common similarity calculation method based on the
original code at the method level. The feature extraction in
Androguard is designed to generate an abstract representation
of the method signature and statement. The latter represents
the type from the statement (e.g., the if-statement, invoke
statement) rather than the exact statement string. In addition,
it also extracts constants, for example, numbers and strings as
comparison features. Androguard then leverages normalized
compression distance (NCD) to compute the similarity dis-
tance between two different methods. This is done by using
state-of-the-art compressors to calculate the similarity between
the two methods, rather than comparing all the statements in

4

TABLE IV
PRECISION OF DETECTING OBFUSCATED PIGGYBACKED APPS BY DIFFERENT DETECTORS

Type Strategy VirusTotal Drebin CSBD Androguard SimiDroid-C SimiDroid-R Average STDEV

CFF
API REFLECTION 54.7% 82.8% 37.6% 28.2% 100.0% 57.9% 60.2% 0.271
API INS 70.9% 77.5% 44.9% 35.7% 100.0% 58.6% 64.6% 0.233

IJC BYTECODE 51.9% 33.3% 13.0% 61.8% 100.0% 38.9% 49.8% 0.297

IO

VARIABLE 88.5% 75.6% 81.5% 99.0% 100.0% 55.5% 83.3% 0.166
PCM 77.3% 78.6% 82.0% 98.7% 3.6% 56.4% 66.1% 0.335
BENIGN CLASS 89.4% 72.3% 34.1% 58.9% 100.0% 57.0% 68.6% 0.238
RESOURCE IMAGE 64.2% 78.4% 73.0% 99.0% 100.0% 57.0% 78.6% 0.177
RESOURCE XML 76.2% 78.4% 77.9% 99.0% 100.0% 57.0% 81.4% 0.161

SO
STRING 101.7% 77.6% 51.6% 35.1% 100.0% 57.2% 70.5% 0.271
BEN PERMISSION 74.6% 81.0% 79.0% 99.0% 100.0% 57.0% 81.7% 0.161

Note. STDEV means the standard deviation of precision of each strategy to different detectors.

a given method.
SimiDroid. SimiDroid detects similar Android apps and

explaining the identified similarities at different levels [17]
(i.e., similarities at method level, component level, and re-
source level). In our study, as Androguard has compared the
similarity of an app pair at the method level, we only use
SimiDroid to compare APK file similarities at the component
and resource levels.

We computed the similarity score of the given two
apps (e.g., app1 and app2) using Equation 1. Given a pre-
defined threshold, which can be computed based on a set of
known piggybacked pairs, it is then possible to conclude with
confidence that the given two apps are similar.

similarity = max(
identical

total − new
,

identical

total − deleted
), (1)

where identical denotes that when a given key/value entry
is matched exactly the same in both maps; similar is that
when a given key/value entry slightly varies slightly from one
app to the other in a pair and more specifically when the
key is the same but values differ; new represents that when a
given key/value entry exists only in map 2 but not in map 1;
deleted denotes that when a given entry existed in map 1, but
is no longer found in map 2. In addition, total = identical +
similar + new + deleted.

C. Experiment Designs

We used the VirusTotal service to scan the generated
obfuscated and deobfuscated piggybacked apps using anti-
malware products by uploading the APK files to VirusTotal.
For each uploaded app, VirusTotal returned a unique report.
By analyzing the statistical results, we were able to obtain the
detecting results of various commercial anti-virus products of
both the obfuscated and deobfuscated piggybacked apps.

Additionally, we used two aforementioned machine
learning-based detectors (i.e., Drebin and CSBD) to scan the
obfuscated and deobfuscated apps. The two machine learning-
based detectors were trained by the original dataset, i.e., 1,399
pairs of original/piggybacked apps. After the models were
trained, they were then used to detect the generated obfuscated
and deobfuscated datasets.

Furthermore, we utilized the two similarity-based de-
tectors, including Androguard and SimiDroid, to detect the
generated piggybacked apps. Androguard was used to compare
original piggybacked malware at the method level and its

corresponding malware that had been obfuscated by vari-
ous strategies. In addition, SimiDroid was used at both the
component level and the resource file level to compare the
corresponding malware pairs.

The evaluation metric we used here are the precision of
the malware detector. The precision is defined as Precision =
TP/(TP +FP), where TP is the number of correctly classi-
fied malware and FP is the number of benign apps which are
predicted as malware. The reason why we choose precision
as the evaluation metric is that if the detection precision of
malware detectors is improved after deobfuscation, it means
that the readability of the code is improved for the detectors.

IV. RESULTS AND ANALYSIS

Our empirical study aims to answer the following three
research questions (RQs):

• RQ1. How is the precision of Android anti-malware
detectors impacted by obfuscation strategies?

• RQ2. How is the precision of Android anti-malware
detectors impacted by deobfuscation strategies?

• RQ3. How do different deobfuscation tools impact the
precision of Android anti-malware detectors?

A. RQ1. Impact of Code Obfuscations

The precision of detecting obfuscated piggybacked apps
by different detectors is shown in Table IV. Note that the
precision of detecting original piggybacked apps (i.e., without
code obfuscation) by each detector is 100%.

1) Commercial Anti-malware Products: VirusTotal. Ta-
ble IV presents that if piggybacked apps are obfuscated, the
detection precision of commercial anti-virus software will be
greatly reduced. Of the 10 obfuscation strategies used, BYTE-
CODE has the most severe impact on anti-virus products,
since the precision of detection decreases the most. This is
followed by API REFLECTION, RESOURCE IMAGE, and
API INS. The least severely affective obfuscation strategies on
the anti-virus products of VirusTotal are VARIABLE and BE-
NIGN CLASS. Note that after being obfuscated by STRING,
the detection precision of VirusTotal did not fall but slightly
increase. STRING is to obfuscate string in the original code of
an APK file, which can be speculated. Most anti-virus products
already have a mature response for obfuscation strategy for
strings, making them sensitive to string obfuscation.

5

TABLE V
PRECISION OF DETECTING DEOBFUSCATED PIGGYBACKED APPS BY DIFFERENT DETECTORS (SIMPLIFY)

Type Strategy VirusTotal Drebin CSBD Androguard SimiDroid-C SimiDroid-R Average STDEV

CFF
API REFLECTION 75.9% ↑ 77.9% ↓ 43.4% ↑ 28.1% ↓ 100.0% − 58.3% ↑ 63.9% ↑ 0.259
API INS 77.0% ↑ 77.9% ↑ 43.2% ↓ 35.6% ↓ 100.0% − 58.6% − 65.4% ↑ 0.241

IJC BYTECODE 59.0% ↑ 63.3% ↑ 33.0% ↑ 61.8% − 100.0% − 38.9% − 59.3% ↑ 0.235

IO

VARIABLE 75.8% ↓ 76.3% ↑ 69.4% ↓ 99.9% ↑ 100.0% − 55.5% − 79.5% ↓ 0.175
PCM 64.3% ↓ 78.6% − 75.3% ↓ 98.6% ↓ 3.6% − 56.3% ↓ 62.8% ↓ 0.323
BENIGN CLASS 70.2% ↓ 79.0% ↑ 65.5% ↑ 58.9% − 100.0% − 57.0% − 71.0% ↑ 0.159
RESOURCE IMAGE 72.1% ↑ 79.0% ↑ 70.1% ↓ 99.9% ↑ 100.0% − 57.0% − 79.7% ↑ 0.172
RESOURCE XML 73.2% ↓ 79.0% ↑ 74.5% ↓ 99.9% ↑ 100.0% − 57.0% − 80.6% ↓ 0.167

SO
STRING 72.7% ↓ 78.4% ↑ 47.9% ↓ 35.1% − 100.0% − 57.2% − 65.2% ↓ 0.232
BEN PERMISSION 71.2% ↓ 81.6% ↑ 69.8% ↓ 99.9% ↑ 100.0% − 57.0% − 79.9% ↓ 0.173

Note. “↑”, “↓”, and “−” after each cell value denote that the detection precision has been improved, decreased, or continued after deobfuscation compared to detecting
obfuscated piggybacked apps. STDEV means the standard deviation of precision of each strategy to different detectors.

TABLE VI
PRECISION OF DETECTING DEOBFUSCATED PIGGYBACKED APPS BY DIFFERENT DETECTORS (DEGUARD)

Type Strategy VirusTotal Drebin CSBD Androguard SimiDroid-C SimiDroid-R Average STDEV

CFF
API REFLECTION 66.6% ↑ 52.9% ↓ 66.6% ↑ 53.9% ↑ 100.0% − 97.5% ↑ 72.9% ↑ 0.208
API INS 73.9% ↑ 52.9% ↓ 0.0% ↓ 67.3% ↑ 100.0% − 97.6% ↑ 65.3% ↑ 0.367

IJC BYTECODE NaN NaN NaN NaN NaN NaN NaN NaN

IO

VARIABLE 55.9% ↓ 68.6% ↓ 41.1% ↓ 71.2% ↓ 100.0% − 97.8% ↑ 72.5% ↓ 0.230
PCM 46.8% ↓ 74.5% ↓ 46.6% ↓ 68.7% ↓ 100.0% ↑ 98.2% ↑ 72.4% ↑ 0.235
BENIGN CLASS 49.7% ↓ 50.9% ↓ 25.5% ↓ 64.7% ↑ 100.0% − 98.2% ↑ 64.8% ↓ 0.293
RESOURCE IMAGE 54.9% ↓ 60.7% ↓ 36.0% ↓ 71.2% ↓ 100.0% − 97.8% ↑ 70.1% ↓ 0.250
RESOURCE XML 54.5% ↓ 74.5% ↓ 46.1% ↓ 70.5% ↓ 100.0% − 98.1% ↑ 73.9% ↓ 0.220

SO
STRING 88.9% ↓ 60.7% ↓ 12.0% ↓ 89.1% ↑ 100.0% − 97.6% ↑ 74.7% ↑ 0.337
BEN PERMISSION 50.2% ↓ 80.3% ↓ 53.1% ↓ 70.6% ↓ 100.0% − 98.2% ↑ 75.5% ↓ 0.214

Note. “↑”, “↓”, and “−” after each cell value denote that the detection precision has been improved, decreased, or continued after deobfuscation compared to detecting
obfuscated piggybacked apps. For BYTECODE strategy, Deguard cannot generate deobfuscated application, so it is displayed as NaN in the table. STDEV means the standard
deviation of precision of each strategy to different detectors.

2) Machine Learning-Based Detectors: Drebin. The ob-
fuscation strategies also reduce the precision of the Drebin
detector. However, apart from BYTECODE, the influences
of other obfuscation strategies on the Drebin detector are
similar. BYTECODE is a very successful evade strategy for
this machine learning-based detector Drebin. BYTECODE
changes the package name of Android piggybacked apps.

CSBD. Although CSBD is also a machine learning-based
detector, it uses a completely different feature (i.e., CFG of
the APK file) than Drebin. As shown in Table IV, the impacts
of different obfuscation strategies for CSBD detector on ob-
fuscated Android piggybacked apps for the CSBD detector are
more pronounced than Drebin. In particular, STRING, BYTE-
CODE, BENIGN CLASS, API INS, and API REFLECTION
significantly changes to CSBD’s precision. However, the im-
pact of other strategies on CSBD is similar to their impact on
Drebin.

3) Similarity-Based Detector: Androguard. Androguard
determines the similarity between two apps based on the
method level. As shown in Table IV, the impact of
different strategies on Androguard is significantly differ-
ent from the other detectors used in this study. VARI-
ABLE, PCM, RESOURCE IMAGE, RESOURCE XML, and
BEN PERMISSION have little effect on Androguard’s detec-
tion performance, which means Androguard believes that the
similarity score of the piggyback malware pair is close to one.
Unlike the aforementioned strategies, STRING, BYTECODE,
BENIGN CLASS, API INS, and API REFLECTION have a
huge impact on the performance of the Androguard. This is
because these strategies are mainly changed at the method
level, which is sensitive to the Androguard.

SimiDroid-C. The similarity between the two apps is

determined by comparing the component level methods. It can
be observed from Table IV that SimiDroid’s resilience is ex-
cellent against all the obfuscation strategies except PCM. This
is because PCM is to obfuscate the name of the component
in the source code.

SimiDroid-R. The comparison of resources is used to
determine the similarity between the two apps’ APK files.
Table IV shows that all the obfuscation strategies drop the
detection performance of this detector. Most obfuscation
strategies will drop their performance from 100% to 55%,
while BYTECODE falls even more to 40%.

Finding #1: The detection precision of all the obfus-
cating strategies examined can decrease from around
20% to 50% of the detection precision of all the de-
tectors examined. In particular, BYTECODE has the
most significant impact on the detection precision, while
BEN PERMISSION has the least impact.

B. RQ2. Impact of Code Deobfuscations

Table V and Table VI show the precision of detecting
deobfuscated piggybacked apps by different detectors. Note
that the values in the row of BYTECODE of Table VI are
NaN, since Deguard can not deobfuscate obfuscated apps using
BYTECODE strategy.

1) Commercial Anti-malware Products: VirusTotal. Ta-
ble V shows that the detection precision after deobfuscation is
worse than that of detecting the obfuscated piggybacked apps
by six strategies (i.e., VARIABLE, PCM, BENIGN CLASS,
RESOURCE XML, STRING, and BNE PERMISSION).
Identifier-renaming strategies (e.g., STRING, VARIABLE,
PCM, and BENIGN CLASS) can decrease the detection preci-

6

sion after deobfuscations. These strategies change the previous
names without knowledge of the original names, so the re-
naming deobfuscation is very difficult. However, deobfuscators
can convert invisible characters into visible characters or long
strings to short strings. As a result, a simple string replacement
makes deobfuscated piggybacked apps look less suspicious,
making them more likely to evade malware detectors.

On the contrary, four strategies (i.e., BYTECODE, RE-
SOURCE IMAGE, API INS, and API REFLECTION) by
using Simplify can increase the precision of VirusTotal for de-
tecting deobfuscated piggybacked apps by 7.2%, 7.8%, 6.1%,
and 21.2%, respectively, compared to detecting obfuscated
apps. Because obfuscated Android piggybacked apps after
deobfuscation with these strategies can restore its malicious
behaviour, thereby increasing the detection precision.

Moreover, for the deobfuscation tool Deguard (Ta-
ble VI), only two deobfuscation strategies (i.e., API INS and
API REFLECTION) can increase the precision of detecting
deobfuscated piggybacked apps. The rest of strategies make
the detection precision worse than that of detecting obfuscated
malware.

Finding #2: The precision of commercial anti-malware
products for detecting deobfuscated piggybacked apps
can be improved by engaging CFF-related strategies
(i.e., API REFLECTION and API INS) for both Simplify
and Deguard. However, after deobfuscations with IO-
related (except RESOURCE IMAGE for Simplify) and
SO-related strategies, the precision of detecting debofus-
cated piggybacked apps would be decreased.

2) Machine Learning-Based Detectors: Drebin. After
deobfuscation tool (i.e., Simplify) using all the strategies (ex-
cept API REFLECTION and PCM), the precision of detecting
deobfuscated piggybacked apps can be slightly improved
compared to detecting obfuscated malware. In particular,
BYTECODE strategy has a significant impact on the precision
of Drebin for detecting deobfuscated piggybacked apps, i.e.,
the detection precision has increased from 33.3% to more
than 63.3%. However, after deobfuscation using Deguard, the
precision would be decreased.

Drebin’s mechanism is to collect a large amount of infor-
mation in the APK as features. As a result, slight modifications
of the code in the APK file, such as simple renaming, are not
very sensitive to Drebin. Therefore, the more features are taken
for a machine learning-based detector, the better the detection
precision and obfuscation resilience capability.

Finding #3: Simplify helps improve the precision of
Drebin on detecting piggybacked apps obfuscated with all
the strategies except API REFLECTION and PCM, while
deobfuscations using Deguard decreases the detection
precision.

CSBD. For Simplify, BYTECODE, BENIGN CLASS,
and API REFLECTION can significantly improve the preci-
sion of CSBD for detecting deobfuscated piggybacked apps,
compared to when used on obfuscated piggybacked apps. In
addition, for Deguard, only API REFLECTION strategy can
improve the detection precision. For all other strategies, the

detection results are worse than that of detecting obfuscated
piggybacked apps.

Finding #4: Simplify with BYTECODE,
BENIGN CLASS, and API REFLECTION helps improve
the precision of CSBD when detecting deobfuscated
piggybacked apps. For Deguard, only API-related
strategy (API REFLECTION) improves the precision of
CSBD, while the rest strategies decrease the precision.

3) Similarity-Based Detector: Androguard. For the de-
obfuscation tool Simplify, the precision of detecting deob-
fuscated piggybacked apps is similar to the detection of
obfuscated piggybacked apps. Therefore, we can conclude that
code deobfuscation has no significant impact on the similarity-
based detector, which uses the method level feature. However,
for Deguard, CFF-related strategies (i.e., API REFLECTION
and API INS) significantly improve the precision of detecting
deobfuscated malware compared with detecting obfuscated
malware.

Finding #5: After deobfuscation using Simplify with
all strategies, the precision of Androguard for detecting
deobfuscated piggybakced malware is similar to detect-
ing obfuscated piggybacked apps. However, Deobfus-
cation using Deguard with CFF-related strategies (i.e.,
API REFLECTION and API INS) can significantly im-
prove the detection precision of Androguard for detecting
deobfuscated piggybacked apps.

SimiDroid-C. For Simplify, except PCM, the resilience
of SimiDroid is excellent against almost all the deobfuscation
strategies. Similar to the method level similarity-based detec-
tor, the deobfuscation strategy has little effect on the compo-
nent level similarity-based detector. Moreover, the detection
precision of the similarity-based detector is not affected by
Deguard’s deobfuscation, especially PCM, which is strongly
influenced by Simplify deobfuscation.

SimiDroid-R. With deobfuscation using Simplify, there
is a slight change in the detection precision. However, using
Deguard for deobfuscation, the precision of SimiDroid-R for
detecting deobfuscated malware is greatly improved when
using Deguard with all the strategies.

Finding #6: Code deobfuscation has no significant im-
pact on a similarity-based malware detector using a
component-level feature to detect deobfuscated piggy-
backed apps. In addition, a deobfuscation tool using
Deguard can significantly improve the precision of a
similarity-based malware detector using a resource-level
feature to detect deobfuscated malware.

By analyzing the experimental results, after deobfusca-
tion, it can be found that many detectors’ precision decreased
for obfuscated malware under different strategies. The reason
is that, in many scenarios, the deobfuscators can not reinstate
the obfuscated code back to the original code, but adding
additional ‘noise’ (the modified code or the newly introduced
code fragments by the deobfuscators), therefore, the results of
the malware detectors can be negatively impacted.

7

1.2
1.1 1.1

0.9

0.7
0.8 0.8

1.0

0.7

1.9

1.0
0.9

1.0
0.9 1.1

0.9

2.5

1.1

0.6
0.9

0.5

1.0

1.9

1.0 1.0
0.8

1.0

1.6

1.0 1.0 1.0 1.0

6.4

1.0 1.0

1.0

1.7

1.0 1.0

1.7

1.0

1.7

CFF IJC IO SO
0.0

0.5

1.0

1.5
i de

ob
fu
s

(a) VirusTotal
CFF IJC IO SO

0.0

0.5

1.0

1.5

2.0

(b) Drebin
CFF IJC IO SO

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c) CSBD

 Simplify Deguard

CFF IJC IO SO
0.0

0.5

1.0

1.5

2.0

i de
ob

fu
s

(d) Androguard
CFF IJC IO SO

0.0

1.5

3.0

4.5

6.0

(e) SimiDroid-C
CFF IJC IO SO

0.0

0.5

1.0

1.5

2.0

(f) SimiDroid-R

Fig. 4. The impact of code deobfuscation tools on different detectors. (a)
VirusTotal, (b) Drebin, (c) CSBD, (d) Androguard, (e) SimiDroid-C, and (f)
SimiDroid-R.

1.1
1.2

1.0 1.0

1.2

0.0

0.9
1.1

1.0 0.9

1.0
0.9

1.0

1.1
1.0

0.9
1.0

0.9
1.0

0.9

API_REFLECTION API_INS
0.0

0.5

1.0

1.5

i de
ob

fu
s

(a) CFF
Bytecode

0.0

0.5

1.0

1.5

(b) IJC
STRING BEN_PERMISSION

0.0

0.5

1.0

1.5

(c) SO

 Simplify Deguard

VARIABLE PCM BENIGN_CLASS RESOURCE_IMAGE RESOURCE_XML
0.0

0.5

1.0

i de
ob

fu
s

(d) IO

Fig. 5. The impact of code deobfuscation tools on different types of
obfuscation strategies. (a) CFF, (b) IJC, (c) SO, and (d) IO.

C. RQ3. Impact of Deobfuscation Tools

To compare the impact of deobfuscation on the detection
precision using different deobfuscation tools (i.e., Simplify and
Deguard), we defined a parameter ideobfus as follows.

ideobfus =
accdeobfus
accobfus

(2)

where accdeobfus denotes the precision of detecting deobfus-
cated piggybacked apps, as shown in Tables V and VI, while
accobfus is the precision of detecting obfuscated piggybacked
apps, as depicted in Table IV. Note that If ideobfus is larger
than 1, it means the detection precision has increased after
deobfuscation. Otherwise, it means the detection precision has
decreased after deobfuscation.

1) Impact on Detectors: Fig. 4 shows the impact of
code deobfuscation tools on different detectors. For each
detector, we compare the impact of each strategy type using
different code deobfuscation tools. Note that each column in
the figure is calculated by averaging the ideobfus belonging to
the corresponding type of strategy and detector.

We can observe from Fig. 4(a), (b), and (c) that Simplify
has a greater impact on commercial anti-malware products
(i.e., VirusTotal) and machine learning-based detectors (i.e.,
Drebin and CSBD) than Deguard. For example, after Simplify
deobfuscation with the strategy types of CFF and IO, the

1 public static void main(String[] args){

2

3 long start = System.nanoTime();

4

5 int result = 0;

6

7 for (int i = 0; i < 10 * 1000 * 1000; i++){

8

9 result += Math.sqrt(i);

10 }

11

12 long duration = (System.nanoTime() start) / 100000;

13

14 System.out.format("Test duration: %d (ms) %n", duration);}

Fig. 6. Case study: insert junkcode.

detection precision of CSBD has greatly improved, compared
with the deobfuscation using Deguard.

Deguard has a greater impact on similarity-based detec-
tors (i.e., Androguard and SimiDroid) than Simplify, as shown
in Fig. 4(d), (e) and (f). For example, after deobfuscation
using Deguard under the strategy types of CFF, IO, and SO,
the detection precision of SimiDroid-R has greatly improved,
compared with the deobfuscation using Simplify.

Finding #7: Different code deobfuscation tools have a
different impact on anti-malware detectors. In particular,
by using Simplify for commercial anti-malware products
(i.e., VirusTotal) and machine learning-based detectors
(i.e., Drebin and CSBD) the improvement in the precision
of detecting deobfuscated piggybacked apps is greater.
However, for similarity-based detectors (i.e., Androguard
and Simidroid), Deguard performs better than Simplify.

2) Impact on Obfuscation Strategies: Fig. 5 shows the
impact of code deobfuscation tools on different types of
strategies. Note that each column in the figure is calculated
by averaging the ideobfus belonging to the same strategy
and corresponding to the same type. From Fig. 5, we can
not conclude that the code deobfuscation tools have any
significantly different impact on each strategy in the same
type, when detecting deobfuscated piggybacked apps after
code deobfuscation.

V. CASE STUDIES

This section presents case studies to demonstrate rep-
resentative deobfuscated piggybacked apps using different
deobfuscation tools.

Insert Junk Code (IJC). Malware ID-FFCE7D9B1 is
deobfuscated by Simplify using an insert junk code (IJC) ob-
fuscation strategy. This strategy involves obfuscators inserting
extra code snippets into the script, including some variables
and functions that are never referenced or called after they
are fixed, as shown in Fig. 6. This code may be executed,
but it will not affect the overall execution result of the script.
The ideal result would be that deobfuscators remove it from
the code. However, the Simplify does not have the ability to
discern and delete the IJC. Therefore, the code structure of this
obfuscated malware can not be restored to the original app.
Consequently, the deobfuscation does not contribute to more
accurate detection of this malware. This malware eventually
evade both the machine learning and the similarity-based

1Since each malware has a unique hash value (MD5), we used the first
eight digits to denote its hash values.

8

1 private void CalculatePayroll(SpecialList a){

2 while (a.HasMore()){

3 b = a.GetNext(true);

4 b.UpdateSalary();

5 DistributeCheck(b);

6 }

7 }

1 private void CalculatePayroll(SpecialList DBhelper){

2 while (DBhelper.HasMore()){

3 DB = DBhelper.GetNext(true);

4 DB.UpdateSalary();

5 DistributeCheck(DB);

6 }

7 }

a){

(a.(a.

a.

(a.

DBhelper){CalculatePayroll

(DBhelper.(DBhelper.

DBhelper.

(DBhelper.

b

b. ();

(b);

();

(DB);

DB

DB.

Fig. 7. Case study: identifier renaming.
1 public class Foo{

2 private String encrypted = "ÎÒ´òµÄ¾ÍÊÇÂÒÂë BBS BBS ";

3 private String key = "ÂBÊÇB ëSÂ Í Ò";
4 private String mySecret = MyDecrytUtil.decrypt(encrypted, key);
5 }

1 public class Foo{
2 private String mySecret = "http://textspeier.de";
3 }

Fig. 8. Case study: string obfuscation.

detectors. VirusTotal’s detection rate has decreased compared
to the obfuscated one. This is because the newly generated
junk code introduces additional noise which adversely affected
the performance of the anti-virus vendors.

Identifier Obfuscation (IO). Malware ID-E4A8A133
is deobfuscated by Simplify for identifier obfuscation (IO),
which is the most common obfuscation technique. For exam-
ple, a class/method/variable name is often obfuscated into an
arbitrary identifier composed of both uppercase and lowercase
letters and numbers, which can be used to evade machine-
learning-based detectors which rely on recognizing and match-
ing identifier. However, the similarity-based detector can detect
this malware. Although Simplify can replace some obfuscated
with more meaningful names (e.g., an example is illustrated
in Fig. 7), the deobfuscation is still unable to restore the app
back to the original malware, thus also evading the machine-
learning-based detectors.

String Obfuscation (SO). Malware ID-A9D69887 is
deobfuscated by Deguard against string obfuscation. Fig. 8
indicates that decryption class generates a key through the
hash code value of the APK certificate and the internal
key reference array (ref key), and reads and decrypts the
original encrypted DEX file. Unlike using AES for the string
encryption option, this class encryption option uses its own
decryption algorithm. For this malware, after deobfuscation,
the string is decrypted to be a fraud e-commerce website,
thus, many more vendors in VirtualTotal are able to detect
this malware after deobfuscation.

VI. RELATED WORK

A. Android Malware Detection
There are several existing solutions to Android malware

detection [14, 18–22], most of which give a binary deci-
sion to identify whether or not an app is malicious. Arp et
al. [14] proposes the Drebin, through a two-class SVM by
performing a lightweight static analysis to extract API calls

and manifest files as the input features. MaMaDroid [23]
leveraged sequences of abstracted method calls to create a
probabilistic representation of program behaviors in the form
of Markov chains. Aafer et al. [18] mined API features for
malware detection in Android using a lightweight KNN-based
binary classification. Hou et al. [24] proposed an Android
malware detection approach using a heterogeneous informa-
tion network. Kim et al. [25] presented a deep-learning-
based approach to malware detection by utilizing the features
extracted from an Android app.

Code-clone-based repackaging application detection is
one of the most common code similarity detection methods
and is widely used in Android repackaged application detec-
tion. Zhou et al. [26] used a fuzzy hashing technique on the
opcode to generate fingerprint information representing the
application. It then uses the edit distance to calculate the sim-
ilarity of the two applications. Hanna et al. [27] used k-gram
to process the application’s opcode and a Bloom-filter based
feature hash algorithm to generate the vector representation of
the application. The representation was then compared using
the Jaccard similarity distance to calculate the similarity of
the two applications. The two methods in [26] and [27] can
achieve large-scale application similarity comparison, but if
IJC is inserted or adjusted in the source code, this strategy is
ineffective. Zheng et al. [28] used the program dependency
graph (PDG) as the feature representation of the application.
A PDG is generated for each method of each class in the
application, and similarity matching is used to detect similar
applications.

B. Android Obfuscation Strategies
Some work on Android-specific obfuscation tools has

previously been conducted. For example, Rastogi et al. [6] pre-
sented Droid Chameleon, a tool for obfuscating Android apps.
Zheng et al. [29] proposed ADAM, a framework for obfuscat-
ing Android apps and testing them on anti-malware products.
Ghosh et al. [30] used a reflection call mechanism in Android
application development to hide calls to sensitive APIs and
access to sensitive data. But this method can be identified
by inspecting whether Java reflection calls are being used.
Harrison et at. [31] analyzes the code obfuscation technology
that resists reverse engineering of Android applications. With
this technology, obfuscation is divided into name obfuscation,
control flow obfuscation, and instruction encoding obfuscation.
Naming obfuscation converts the name of a package, class, or
method in the code into a meaningless string. However, since
DEX bytecode is always stored in memory in the form of clear
text during execution, an attacker can dynamically analyze the
name obfuscation and implement the DEX bytecode loading
logic [32]. There are also some other studies also focused on
the effects of obfuscations on anti-malware products, without
proposing new obfuscation tools. Pomilia [33] studied the
performance of nine anti-malware products on an obfuscated.
Maiorca et al. [34] studied the effects of code obfuscated by
a single tool on 13 anti-malware products.

C. Android Deobfuscation
Schulz et al. [35] proposed a deobfuscation method for

the string encryption option provided by DexGuard, an obfus-

9

cation tool for Android. DexGuard first extracts the decoded
string, and later reverse obfuscation is performed by replacing
the encrypted string with the extracted decryption string and
deleting the decryption method. However, if multiple class
encryption options are applied so that the decryption method
cannot be found, there is the limitation that reverse obfuscation
cannot be performed. Piao et al. [36] also analyzed DexGuard
and analyzed string encryption and class encryption options.
In the case of the string encryption option, it was shown that
the decrypted string is output to the log when the decryption
method is called and that the log can be extracted by demon-
strating that the log is identical to the original string. The
method, key, and initial vector are extracted, and the decrypted
class file is extracted through the decryption method call. In
the case of APKs, the approach cannot perform deobfuscation
of strings and cannot extract strings of routines that are not
executed. If the string such as the attacker’s IP address or the
name of the malicious API is called in and the malicious APK
is not deobfuscated, it may not be able to determine whether
the APK is malicious.

VII. CONCLUSION

This paper presents a large-scale empirical study of code
deobfuscations on detecting obfuscated Android piggybacked
apps. First, we generated obfuscated piggybacked apps by
using 10 obfuscation strategies on 1,399 Android piggybacked
apps. Using the obfuscated apps generated, we then used
two commonly used deobfuscation tools, i.e., Simplify and
Deguard, to produce deobfuscated piggybacked apps. The
total number of generated obfuscated and deobfuscated piggy-
backed apps was 11,378. Next, we have conducted an empir-
ical evaluation of the generated obfuscated and deobfuscated
piggybacked apps on three types of Android anti-malware
detectors, including commercial anti-malware products (Virus-
Total), machine learning-based detectors (Drebin and CSBD),
and similarity-based detectors (Androguard and SimiDroid).
The analysis was performed on two aspects: the impact of code
obfuscations and deobfuscations. Along with seven findings,
our results provided useful insights into the design of Android
malware detectors against obfuscations and deobfuscations.

VIII. ACKNOWLEDGEMENT

This work is supported in part by the Australian Research
Council under Grant DP200101328 (by Ivor W. Tsang and
Yulei Sui), in part by the National Natural Science Foundation
of China under Grants 62002163 and 61772055 (by Guanping
Xiao and Zheng Zheng).

REFERENCES
[1] T. I. Murphy, “Android-statistics & facts,” https://www.statista.com/topics/

876/android, 2018.
[2] Y. Tang, Y. Sui, H. Wang, X. Luo, H. Zhou, and Z. Xu, “All your app links

are belong to us: Understanding the threats of instant apps based attacks,”
ACM SIGSOFT FSE, 2020.

[3] “Apktool,” https://ibotpeaches.github.io/Apktool/, 2010, last accessed March
2019.

[4] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
evolution,” in IEEE S&P. IEEE, 2012, pp. 95–109.

[5] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable detection
of piggybacked mobile applications,” in Proceedings of the third ACM
conference on Data and application security and privacy, 2013.

[6] V. Rastogi, Y. Chen, and X. Jiang, “Catch me if you can: Evaluating android
anti-malware against transformation attacks,” TIFS, vol. 9, no. 1, pp. 99–108,
2013.

[7] M. Hammad, J. Garcia, and S. Malek, “A large-scale empirical study on the
effects of code obfuscations on android apps and anti-malware products,” in
ICSE, 2018.

[8] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren,
“Android hiv: A study of repackaging malware for evading machine-learning
detection,” TIFS, 2019.

[9] C. Fenton, “Simplify,” https://github.com/CalebFenton/simplify, 2016.
[10] B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev, “Statistical deobfusca-

tion of android applications,” in CCS, 2016.
[11] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and L. Cavallaro,

“Understanding android app piggybacking: A systematic study of malicious
code grafting,” TIFS, 2017.

[12] R. Baumann, M. Protsenko, and T. Müller, “Anti-proguard: Towards auto-
mated deobfuscation of android apps,” in Proceedings of the 4th Workshop
on Security in Highly Connected IT Systems, 2017, pp. 7–12.

[13] Wikipedia contributors, “Selenium (software) — Wikipedia, the free
encyclopedia,” 2020, [Online; accessed 1-February-2020]. [Online].
Available: https://en.wikipedia.org/w/index.php?title=Selenium (software)
&oldid=937169086

[14] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens,
“Drebin: Effective and explainable detection of android malware in your
pocket.” in NDSS, 2014.

[15] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, Y. Le Traon et al., “Empir-
ical assessment of machine learning-based malware detectors for android,”
Empirical Software Engineering, 2016.

[16] A. Desnos et al., “Androguard-reverse engineering, malware and goodware
analysis of android applications,” URL code. google. com/p/androguard,
2013.

[17] L. Li, T. F. Bissyandé, and J. Klein, “Simidroid: Identifying and explaining
similarities in android apps,” in 2017 IEEE Trustcom/BigDataSE/ICESS,
2017.

[18] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features for
robust malware detection in android,” in SecureComm, 2013.

[19] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and P. Liu,
“Finding unknown malice in 10 seconds: Mass vetting for new threats at the
google-play scale.” in USENIX, vol. 15, 2015.

[20] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-based
detection of android malware through static analysis,” in FSE, 2014.

[21] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcontext:
Differentiating malicious and benign mobile app behaviors using context,”
in ICSE, 2015.

[22] Y. Zhang, Y. Sui, S. Pan, Z. Zheng, B. Ning, I. Tsang, and W. Zhou, “Familial
clustering for weakly-labeled android malware using hybrid representation
learning,” IEEE Transactions on Information Forensics and Security, vol. 15,
pp. 3401–3414, 2019.

[23] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross, and
G. Stringhini, “Mamadroid: Detecting android malware by building markov
chains of behavioral models,” arXiv preprint arXiv:1612.04433, 2016.

[24] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hindroid: An intelligent
android malware detection system based on structured heterogeneous infor-
mation network,” in SIGKDD, 2017.

[25] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep
learning method for android malware detection using various features,”
TIFS, vol. 14, no. 3, pp. 773–788, 2019.

[26] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone
applications in third-party android marketplaces,” in CODASPY, 2012.

[27] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A
scalable system for detecting code reuse among android applications,” in
DIVMA, 2012.

[28] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting cloned
applications on android markets,” in ESORICS, 2012.

[29] M. Zheng, P. P. Lee, and J. C. Lui, “Adam: an automatic and extensible
platform to stress test android anti-virus systems,” in DIMVA. Springer,
2012, pp. 82–101.

[30] S. Ghosh, S. Tandan, and K. Lahre, “Shielding android application against
reverse engineering,” International Journal of Engineering Research &
Technology, vol. 2, no. 6, pp. 2635–2643, 2013.

[31] R. Harrison, “Investigating the effectiveness of obfuscation against android
application reverse engineering,” Royal Holloway University of London,
Tech. Rep. RHUL-MA-2015-7, 2015.

[32] Y. Zhang, X. Luo, and H. Yin, “Dexhunter: toward extracting hidden code
from packed android applications,” in ESORICS. Springer, 2015, pp. 293–
311.

[33] M. Pomilia, “A study on obfuscation techniques for android malware,”
Sapienza University of Rome, p. 81, 2016.

[34] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, “Stealth attacks:
An extended insight into the obfuscation effects on android malware,”
Computers & Security, vol. 51, pp. 16–31, 2015.

[35] H. Schulz, D. Titze, J. Schutte, T. Kittel, and C. Eckert, “Automated de-
obfuscation of android bytecode,” Department of Computer Science, The
University of Munchen, Germany, July, 2014.

[36] Y. Piao, J.-H. Jung, and J. H. Yi, “Server-based code obfuscation scheme for
apk tamper detection,” Security and Communication Networks, 2016.

10

https://www.statista.com/topics/876/android
https://www.statista.com/topics/876/android
 https://ibotpeaches.github.io/Apktool/
 https://github.com/CalebFenton/simplify
https://en.wikipedia.org/w/index.php?title=Selenium_(software)&oldid=937169086
https://en.wikipedia.org/w/index.php?title=Selenium_(software)&oldid=937169086

