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Abstract With the flourishing development of Unmanned Aerial Vehicles (UAVs), the mission

tasks of UAVs have become more and more complex. Consequently, a Real-Time Operating Sys-

tem (RTOS) that provides operating environments for various mission services on these UAVs has

become crucial, which leads to the necessity of having a deep understanding of an RTOS. In this

paper, an empirical study is conducted on FreeRTOS, a commonly used RTOS for UAVs, from

a complex network perspective. A total of 85 releases of FreeRTOS, from V2.4.2 to V10.0.0, are

modeled as directed networks, in which the nodes represent functions and the edges denote function

calls. It is found that the size of the FreeRTOS network has grown almost linearly with the evolu-

tion of the versions, while its main core has evolved steadily. In addition, a k-core analysis-based

metric is proposed to identify major functionality changes of FreeRTOS during its evolution.

The result shows that the identified versions are consistent with the version change logs. Finally,

it is found that the clustering coefficient of the Linux OS scheduler is larger than that of the Free-

RTOS scheduler. In conclusion, the empirical results provide useful guidance for developers and

users of UAV RTOSs.
� 2018 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recently, research and applications of Unmanned Aerial Vehi-
cles (UAVs) have become issues of intense interest. Meanwhile,
missions conducted by UAVs are more and more complex,

which leads to complex on-board application designs. There-
fore, using a Real-Time Operating System (RTOS) to develop

these complex on-board applications would be preferable and
critical. An RTOS is a type of Operating System (OS) that is
designed to provide real-time applications with several basic

supports, such as scheduling, synchronization, resource man-
agement, precise timing, communication, and I/O.1 Its reliabil-
ity would have direct impacts on safety operations of UAVs.

Therefore, analyzing a commonly used RTOS of UAVs is
essential and useful for developing UAV on-board software.

Ranging from nature to human society, many complex sys-
tems can be abstracted as networks, in which nodes represent

fundamental elements and edges denote interactions between
fundamental elements.2 Therefore, graph theory and network
analysis methodologies can be implemented to investigate the
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topological characteristics of complex systems. Firstly, regular
lattices are utilized to analyze the network topologies of real
systems. Nevertheless, its application domain is too limited.

In 1959, Erdös and Rényi proposed the random network
model, known as the ER network, which was constructed by
randomly connecting nodes.3 This model has dominated net-

work research for decades. However, since the ER network
is static, it could not explain some phenomena (e.g., Matthew
effect4) that exist in ubiquitous dynamic evolution systems.

Due to the introductions of the small-world network model
and the scale-free network model at the end of the past cen-
tury,5,6 network science has greatly developed and attracted
various research studies on real-world complex systems, such

as protein networks,7 Internet,8 and transportation net-
works.9,10 At the same time, several research directions have
been flourishing, including traffic dynamics,11 multi-layer net-

works,12,13 optimization processes,14 network control,15,16 and
so on. One interesting aspect is to analyze software systems
from a complex network perspective.17

Large-scale software systems represent one of the most
complex artificial systems. By using complex network theory,
a wealth of studies on the analysis of software structures and

functions has been conducted. Ref.18 shows, for the first
time, that software networks also present scale-free and
small-world behaviors, which is in accordance with other
real-world complex systems. In Ref.19, researchers studied

the network characteristics of two different representations
of interactions among software components: call graphs
and class diagrams. In addition, they proposed a refactoring

process-based software evolution model. Moreover, several
static analyzers have been developed to translate programs
into graph representation for software understanding.20,21

Among various types of software systems, operating systems
(OSs) are typical and critical, and thus have attracted a large
amount of attention from a network perspective. Zheng

et al.22 proposed two network growth models for describing
the development of Gentoo Linux. Gao et al.23 investigated
the kernel directory of the Linux kernel as a complex net-
work. It was found that when encountering intentional

attacks, having large in-degree nodes would lead to more
damage to the whole system. Wang et al.24 explored the cou-
pling relationships among components in Linux, and ana-

lyzed the impact of system failures on networks. Recently,
Xiao et al.25 studied the evolution of 62 major releases of
the Linux kernel, ranging from versions 1.0 to 4.1, from a

network perspective. This work revealed the characteristics
of the structure and functionality evolution of the Linux net-
work. However, most of the research has focused on
general-purpose operating systems (GPOSs, e.g., Linux).

Studies that analyze real-time operating systems (RTOSs)
from a network perspective are still rarely performed.

The greatest difference between an RTOS and a GPOS is

that an RTOS has a deterministic scheduler, which means
that it must provide a timely response to real-world events.
Among various types of RTOSs, FreeRTOS is an open-

source, market-leading, and UAV commonly used
RTOS.26,27 For example, the firmware of Crazyflie 2.0, a
popular open-source flying development platform, is based

on it.28 FreeRTOS officially supports approximately 35
architectures that cover more than 20 vendors and a hun-
dred types of processors. Recent research on FreeRTOS
has concentrated on functionality extension,29 testing and
verification,30,31 scheduler analysis,32 and so on. As a com-
monly used RTOS for embedded systems, it is very interest-

ing to explore the evolution of FreeRTOS and its
relationship with a real-time system’s properties, such as
small storage space support, various architectural designs,

and high real-time requirement.
Our study is performed with 85 releases of FreeRTOS, from

V2.4.2 to V10.0.0. In this study, we focus on the following four

research questions, which can reflect the topological and func-
tional structure evolution of FreeRTOS comprehensively.

RQ1. How have topological properties of the FreeRTOS
network evolved over versions?

According to Lehman’s laws of software evolution,33 the
evolution of software could follow several laws, such as contin-
uing growth, increasing complexity, and conservation of orga-

nizational stability. Therefore, from a complex network
perspective, how FreeRTOS has evolved over versions and
what the manifestations of the topological properties during

the evolution are, as well as a comparison with the evolution
of the Linux OS network, are interesting subjects to explore.

RQ2. How has the k-core structure of the FreeRTOS net-

work evolved over versions?
Identifying highly interconnected subgraphs of a graph as

well as finding characteristics of these substructures attracts
topical interest in network research.2 Among various metrics

that are used to evaluate the relative importance of nodes,
using k-cores is a well-established method.34 A k-core of a net-
work can be obtained by recursively removing nodes with a

degree lower than k, until all nodes in the remaining network
have a degree higher than or equal to k.35 By adopting the
k-core decomposition method on FreeRTOS networks, how

the k-core structures have evolved over versions will be
answered in this research.

RQ3. How can we evaluate the functionality changes of

FreeRTOS?
Over the past ten years, dozens of FreeRTOS versions have

been released, and several functionality changes have been
implemented in the operating system (e.g., new feature intro-

ductions and enhancements). Thus, network metrics that can
be utilized to evaluate the functionality changes of FreeRTOS
will be demonstrated.

RQ4. How has the real-time scheduler of FreeRTOS
evolved over versions?

As the most fundamental composition of an RTOS, how

the real-time scheduler of FreeRTOS has evolved with versions
and the nature of the discrepancy between a real-time sched-
uler and a non-real-time scheduler on networks will be exam-
ined in this research.

The remainder of this paper is organized as follows. Sec-
tion 2 describes methods utilized in this paper. Section 3 pre-
sents analytical results and discussion. Finally, conclusions

are given in Section 4.
2. Methods

2.1. Research data

FreeRTOS was initially developed by Richard Barry in 2003.
Due to the open-source characteristic, all the codes of



Fig. 1 A total of 85 FreeRTOS releases, ranging from V2.4.2

developed in 2004 to V10.0.0 in 2017.
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FreeRTOS for the 85 releases, from V2.4.2 to V10.0.0, are

available on the SourceForge.A Since each version of Free-
RTOS was successively developed based on its previous ver-
sion, we chose the 85 releases as the research data for the
evolution study. The selected versions and their release dates

are shown in Fig. 1. Note that SN represents the version’s
sequence number, according to its release date (e.g., the SN
of V2.4.2 is 1 and that for V10.0.0 is 85). This symbol will

be used and discussed in the following parts of the paper. In
addition, the mapping between major version numbers (e.g.,
V3.0.0) and their sequence numbers is exhibited in Table 1.

Compared with most GPOSs, the size of the FreeRTOS
source code is small. For example, the lines of code (LOCs)
of the FreeRTOS release V10.0.0 are approximately 70000,

while the LOCs of the Linux kernel V4.1 are more than 19 mil-
lion. Fig. 2 displays the structure of the FreeRTOS V10.0.0
source code. For all FreeRTOS versions, the core code is con-
tained in three files, which are called tasks.c, list.c, and queue.c.

Scheduler functionalities are mainly implemented in the file
tasks.c. Structures and functions used by the scheduler are
defined in the file list.c, while the file queue.c contains thread-

safe queues that are implemented for synchronization and
inter-task communication. In addition to the core code files,
there are four optional files, called croutine.c, timers.c, event_-

groups.c, and stream_buffer.c, which implement co-routine
functionality, software timer, event group, and stream buffers,
respectively. These four files are added in V4.0.0, V7.0.0,
V8.0.0, and V10.0.0, separately. The directory include contains

the core header files. The directory portable includes the
architecture-dependent code. In this directory, each compiler
contains an architecture-specific code called port.c for the sup-

ported processor architecture. Since memory management is
specifically defined for different architectures, FreeRTOS
keeps the memory management API in the portable layer,

and implements several heap management samples in the
directory MemMang that can be used for most of the
architectures.36
A https://sourceforge.net/projects/freertos. The latest release is

V10.0.0, when we conducted this study.
2.2. Software network modeling

FreeRTOS is implemented mostly based on the C program-
ming language, with a few functions written in an assembler
language, which is used for architecture-specific details. For

a C language-developed software system, its realization mainly
depends on function calls, which can be commonly regarded as
a call graph, as depicted in Fig. 3. We define the call graph as a
directed network GðN;EÞ, where N ¼ fv1; v2; . . . vng is the set

of n nodes, which are in terms of functions, and
E ¼ fe1; e2; . . . ; emg is the set of m edges, each of which,
ei ¼ ðvs; vtÞ ði ¼ 1; 2; . . . ;mÞ, represents the call between each

pair of nodes vs and vt ðvs; vt 2 NÞ. We model all of the 85
releases from V2.4.2 to V10.0.0 as directed networks and ana-
lyze the largest weakly connected component of each network.

The definitions of the other network properties used in this
study are as follows.

Clustering coefficient C: the clustering coefficient C

describes the probability that a node’s neighbors are also the
neighbors of one another. A larger clustering coefficient means
that there exist more tightly connected neighborhoods. Given a
directed network, the clustering coefficient of node i is defined

as37

Ci ¼ 1
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where aij ¼ 1 if there is an edge from node i to j; otherwise,

aij ¼ 0. Here, kini and kouti are the in-degree and out-degree of

node i, respectively. For the whole network, the clustering
coefficient is denoted as

C ¼ 1

n

Xn

i¼1

Ci ð2Þ

Degree distribution PðkÞ: the degree distribution is utilized
to denote the probability of a randomly selected node with a

degree of k.

2.3. k-core decomposition

Considering a graph GðN;EÞ of jNj ¼ n nodes and jEj ¼ m
edges, the definitions of k-core metrics are as follows.38k-
core: a subgraph H ¼ ðV;EjVÞ induced by the set V#N is a
k-core or a core of order k if and only if 8v 2 V : kv P k,

and H is the maximum subgraph with this property.
Coreness: node i has a coreness of k if it is located in the k-

core but not in the ðkþ 1Þ -core. The maximum coreness kmax

is that the kmax -core is not empty, but the ðkmax þ 1Þ -core is.
Note that kmax is also regarded as the graph coreness, while the
kmax -core is usually called the main core of a graph.

Core size: it is the number of nodes of the k-core.k-shell: a
k-shell Sk has all the nodes whose coreness is k. The k-core is
thus composed of all Sc with c P k.

Fig. 4 shows a sketch of the k-core decomposition for an
example network. Different types of closed lines separate dif-
ferent cores, while different colors of nodes represent different
corenesses. All of the nodes of this network belong to the 1-

core. After recursively removing all of the nodes with a degree
less than 2, the remaining nodes compose the 2-core. Finally,
there is the 3-core, which is the innermost set of nodes. It



Table 1 Mapping between major version numbers and their

sequence numbers.

Major version 3 4 5 6 7 8 9 10

Sequence number 10 18 40 53 61 75 84 85

Note: for example 3 means V3.0.0 major version.

Fig. 2 Structure of FreeRTOS V10.0.0 source code.
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should be noted that the degree of a node could not represent
the hierarchy. For example, as shown in Fig. 4, the degree of

node a is 4, while its coreness is 1. Comparatively, the degree
of node b is 3, but its coreness is 3.

3. Results and discussion

In this section, we present the evolution analysis results of the
FreeRTOS network from four aspects. These aspects are the

network property evolution, the k-core structure evolution,
the functionality change evaluation, and the real-time sched-
uler evolution. The four parts correspond to the four research

questions illustrated in Section 1.

3.1. Evolutions of network properties

In this subsection, we present the analysis of the topological

property evolution of the FreeRTOS network. According to
Lehman’s laws of software evolution, in continuing growth,33

the functionality of a program must be continually increased
Fig. 3 A depiction for modeling a C lan
to satisfy user feature requirements during its lifecycle. The
continuing growth could be validated by calculating software
size metrics and determining their trends over time. Obviously,

as exhibited in Fig. 5(a) and (b), the size of the FreeRTOS net-
work grows almost linearly with increasing sequence numbers.
It can be observed that the numbers of nodes n and edges m in

V10.0.0 are approximately 7.36 and 8.00 times higher than
those of V2.4.2, respectively. This finding indicates that the
functionality of FreeRTOS is continually growing and is in

accordance with law 6 of Lehman’s laws of software evolution.
Fig. 5(c) depicts that the clustering coefficient C evolves

with an increase in the sequence numbers. It can be easily
obtained that the evolution of the clustering coefficient C has

two stages, i.e., decreasing from V2.4.2 to V6.1.1 and then
increasing from V6.1.1 to V10.0.0. The decreasing of C means
that the local connections of the FreeRTOS network would

tend to be looser with evolution. In contrast, the increasing
of C in the second stage indicates that the local connections
become tighter. This phenomenon might be attributed to the

reason that developers tend to pay more attentions to improve
the core functionality of FreeRTOS other than to port more
supported architectures. By counting the supported compiler

directories in the portable layer of the source code, it is found
that 10 new compilers have been added from V2.4.2 to V6.1.1,
while only 2 new compilers from V6.1.1 to V10.0.0.

The evolution of the average degree hki (i.e., average out-/

in-degree) is shown in Fig. 5(d). Similar to the clustering coef-
ficient C, a two-stage evolution trend is found. Fig. 5(e) and (f)
presents the degree distributions of V2.4.2 and V10.0.0. It can

be notably observed that the degree distributions of the two
versions are similar: the out-degree distribution experiences
an exponential distribution, while the in-degree distribution

follows a power-law distribution. This finding is in accordance
with the results on Linux OS.23–25 Both the out-degree and in-
degree are quite heterogeneous, which indicates that in the

software development process, only a few functions would
have many calls or would be called many times, due to the
requirements of reliability and maintenance.

Moreover, we make a comparison between the network evo-

lutions of FreeRTOS and Linux OS, as shown in Table 2. Note
that the data on Linux in Ref. 25 has 62 major releases, includ-
ing versions 1.0 to 4.1. It can be observed that the sizes of the

two networks are significantly different, which is attributed to
their different application domains. More functionalities, e.g.,
device drivers and filesystems, are obviously required by

GPOSs (e.g., Linux OS) users. However, RTOSs are typically
guage program as a directed network.



Fig. 4 Illustration of k-core decomposition for an example

network.
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used in embedded systems, which usually have a small storage
space. This circumstance would limit the sizes of RTOSs. In

addition, the functionality of RTOSs is more focused on task
scheduling. Moreover, the variations in the average degrees
(i.e., average out-/in-degree) and clustering coefficients of both

systems are of the same order of magnitude. In addition, the
degree distributions of the out-degree and in-degree for the
two systems follow the same type of distributions.

3.2. Evolution of k-core structures

In this part, we analyze the evolution of k-core structures of

the FreeRTOS network using the k-core decomposition
method introduced in Section 2.3. Fig. 6 shows the k-core
and its decomposition process of the FreeRTOS V10.0.0 net-
work. Colors on the nodes distinguish different k-shells and

the process of k-core decomposition of V10.0.0 from 1 to 6.
Note that all the figures are plotted by cytoscape, a network
visualization tool. Notably, it can be observed that with
Fig. 5 Evolutions of topological p
increasing k, the inner part of the network remains connected
and becomes more internal, which indicates the hierarchy
structure of the FreeRTOS network. Furthermore, as depicted

in Fig. 6, the core size decreases gradually with increasing k,
which reflects the centrality of the structure. For studying
the correlation between the core size and coreness, we plot

the core sizes with increasing corenesses in Fig. 7. This figure
shows a power-law relation between the core size and coreness,
which illustrates that each k-core structure consists of a con-

stant fraction of the ðk� 1Þ -core and is well in accordance
with other software systems, such as MySQL and VTK.39

In addition, k-core decomposition can distinguish the most
central parts, i.e., the maximal coreness of the network. The

maximal coreness region of the network consists of the most
important nodes to a certain extent, since it composes the
skeleton of the software network. In the following, we concen-

trate on analyzing the evolution of this part, i.e., the maximal
coreness of the FreeRTOS network.

Fig. 8 displays the evolution of the k-core structures of the

FreeRTOS network. The maximal coreness, also called the
graph coreness, grows steadily with increasing sequence num-
bers, as shown in Fig. 8(a). The range of the graph coreness is

from 4 to 7, which is close to those of other software systems.
For example, the graph coreness of Linux is 6, and that of
VTK is 5.39 Compared with other real-world complex systems,
it is found that the graph coreness of the FreeRTOS network is

much smaller. For example, the graph coreness of the Internet
AS level is approximately 20.40 This finding demonstrates that
a reliable and readable programming method would usually

not prefer to implement a much higher density and concentra-
tion of function interactions, due to the requirement of com-
plexity controlling, which would be beneficial to development

and maintenance.
The evolution of the graph coreness consists of five plateau

stages: Stage A (V2.4.2-V4.6.1), Stage B (V4.7.0-V6.1.1), Stage
roperties of FreeRTOS network.



Table 2 Comparison between network evolutions of FreeRTOS and Linux OS.

OS n m hki C Out-degree In-degree

FreeRTOS 116–854 235–1882 1.81–2.20 0.013–0.049 Exponential Power-law

Linux OS 3377–398092 11665–1529505 3.45–3.84 0.040–0.067 Exponential Power-law

Fig. 6 Sketches of the k-cores of FreeRTOS V10.0.0.
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C (V7.0.0-V8.1.2), Stage D (V8.2.0-V8.2.3), and Stage E
(V9.0.0-V10.0.0). With increasing sequence numbers, the
graph coreness grows from 4 in V2.4.2 to 7 in V8.2.0, which

indicates that the complexity of FreeRTOS has increased.
However, the graph coreness decreases to 6 in V9.0.0. This
trend might be attributed to the requirement for controlling

the complexity of FreeRTOS, and it is in accordance with Leh-
man’s laws of software evolution: conservation of organiza-
tional stability.33 Another observation that is worthwhile to
mention is that by inspecting the change logs,B it is found that

the versions of the turning points, marked by dotted lines, have
major functionality changes. For example, a new software
timer was implemented in V7.0.0.

Fig. 8(b) shows the size evolution of the main core with
increasing sequence numbers. An interesting phenomenon is
that the main core’s size does not grow with an increase in

the network size or the graph coreness. The core sizes of most
versions are approximately 30. It can be observed that the
maximal core size appears in some versions with a graph core-
ness of 4, while the minimal core size occurs in some versions

with a graph coreness of 6. Compared with the graph coreness
evolution, it is found that when the graph coreness signifi-
cantly changes in some versions, the corresponding core sizes

of these versions also change. This finding occurs mainly due
to the activity that major functionality updates were imple-
B http://www.freertos.org/History.txt.II
mented in these versions. Moreover, it can be seen that,
although the graph corenesses of some versions are identical,
the core sizes of these versions are significantly different.

The main core is the most central and fundamental part of a
network. Thus, changes in its major functionality would be
inevitably reflected by changes in the network structure.
Fig. 7 Correlations between coreness and core size across

different versions.



Fig. 8 Evolution of k-core structures.
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3.3. Evaluation of functionality changes

During the evolutions of software systems, new feature intro-

ductions and enhancements are continuously implemented.
In this subsection, to evaluate the functionality changes of
FreeRTOS, we propose a metric based on k-core decomposi-

tion analysis.
From the analysis in Section 3.2, we have the following

observations: (A) the evolutions of the graph coreness and
core size of the FreeRTOS network could be utilized to eval-

uate the functionality changes that occurred during the evo-
lution period; (B) although different versions could have an
identical graph coreness, their core sizes were different.

Based on the observations, we investigate the node change
of the main core in detail to evaluate the functionality
changes of FreeRTOS. It is noted that a node change refers

to the difference of nodes in main cores between two adja-
cent versions. We define the following metrics for measuring
the changes.

Nodeiapp: represents the number of newly appeared nodes in

the main core of version i compared with version i� 1. For

example, Node3app ¼ 5 means that 5 new nodes occur in the

main core of version 3 compared with version 2.Nodeidisapp:

denotes the number of disappeared nodes in the main core
of version i compared with version i� 1. For example,

Node3disapp ¼ 2 means that 2 nodes disappear in the main core

of version 3, but they exist in version 2.Nodeichanged: represents

the number of changed nodes in the main core of version i
compared with version i� 1. It equals to the sum of the num-
bers of newly appeared and disappeared nodes, i.e.,

Nodeichanged ¼ Nodeiapp þNodeidisapp ð3Þ
For example, Node3changed ¼ 7 indicates that 7 nodes have

changed in the main core of version 3 from version 2. Note

that when i ¼ 1, Node1app and Node1disapp are set to 0. Thus,

Node1changed ¼ 0.

To study the evolution of the metric, we implement a tool

that is utilized to automatically inspect the main cores of the
85 versions. Fig. 9 shows the evolution of Nodechanged with

increasing sequence numbers. Note that Nodechanged ¼ 0 means

that the main cores of two adjacent versions are identical. It

can be notably observed that Nodechanged for a few versions

are significantly larger than those for the others. In this study,
the evaluation threshold s is set to 5. By analyzing the change
logs of the 85 versions, it is identified that versions with
Nodechanged larger than or equal to the threshold have imple-

mented more major functionality changes, including new fea-

tures, API implementations, kernel changes, and so on. A
list of the identified versions is exhibited in Table 3. For exam-
ple, mutex functionality was added in V4.5.0, and task notifi-
cations were introduced in V8.2.0.

Note that when evaluating main core changes, we use
words ‘‘appeared” and ‘‘disappeared”, not ‘‘added” and ‘‘re-
moved”. The reason is that the newly appeared nodes in the

main core of version i could have already existed in version
i� 1. The emergence of these nodes might be attributed to
the function calling connection changed in the main core or

other shells.41 Similarly, the nodes that disappeared in version
i could not indicate that these nodes have been removed from
its previous version.

It is also worthwhile to mention that versions with
Nodechanged ¼ 0 could not indicate that the functions of these

versions have not been changed. Through inspecting the
change logs, it is found that changes that occur in versions with
Nodechanged ¼ 0 are mostly architecture port supports and

improvements as well as fixes. In addition, it should be noted
that the threshold setting could influence the identification of

versions with major functionality changes.
Furthermore, by comparing the results between Fig. 8 and

Fig. 9, it can be easily observed that the proposed metric

Nodechanged is more effective for evaluating the major function-

ality changes of FreeRTOS than using the graph coreness and

core size.

3.4. Evolution of real-time scheduler

In the following, we firstly analyze the function evolution of
the real-time scheduler for FreeRTOS. In addition, we build
the scheduler networks of FreeRTOS and Linux OS, with

the objective of comparing the discrepancy between the real-
time and non-real-time schedulers from complex network
points of view.

In FreeRTOS, the execution thread is called a ‘task’. The

functionality of the real-time scheduler, also called task man-
agement, is mainly implemented in the file tasks.c. Fig. 10 exhi-
bits the evolution of the task function nodes. From the

development manual,36 it is known that the implementation
of FreeRTOS has its own coding style. For example, function
names are prefixed with both the file they are defined within

and the type they return (e.g., vTaskSuspend() is defined in
the file tasks.c and returns a void.). We conduct a statistic of
the defined functions that correspond to the task management

in the file tasks.c and plot an evolution curve. As shown in
Fig. 10(a), the number of function nodes grows with increasing
sequence numbers, which indicates that the functionality of the
real-time scheduler is continually enhanced with the evolution

of versions. In addition, although the number of task function
nodes increases, it can be observed from Fig. 10(b) that the
proportion of task function nodes in the entire network has



Fig. 9 Evolution of Nodechanged among 85 versions.

Table 3 The identified versions and their major functionality

changes.

Identified

versions

Major functionality changes

V3.0.0 + Each port now defines portBASE_TYPE as the

data type that is most efficient for that architecture.

+ The idle task is now created when the scheduler

is started . . .
V4.0.0 + New co-routine functionality

+ Several kernel updates . . .

V4.5.0 + Added Mutex functionality.

+ Added the xQueueSendToFront(),

xQueueSendToBack() and xQueuePeek()

functionality . . .

V4.7.0 + Introduced the ’alternative’ queue handling API

+ Introduced the counting semaphore macros . . .
V4.8.0 + Added new xQueueIsQueueEmptyFromISR(),

xQueueIsQueueFullFromISR() . . . API functions

+ Added new trace macros . . .

V7.0.0 + Introduced a new software timer

implementation

+ Various enhancements to the kernel

implementation in tasks.c . . .
V8.0.0 + Event groups

+ Centralised deferred interrupt processing . . .

V8.2.0 + Task notifications

+ Several kernel updates . . .
V9.0.0 + Tasks, semaphores, queues, timers and event

groups can now be created using statically allocated

memory

+ Added the xTaskAbortDelay() API function . . .
V10.0.0 + Stream buffers

+ Message buffers . . .

Fig. 10 Evolution of task function nodes.

Table 4 Comparison of scheduler networks between Free-

RTOS and Linux OS.

Network

property

Average value (standard

deviation)

Test result (p value)

FreeRTOS Linux OS FreeRTOS vs Linux

OS

C 0.021

(0.006)

0.024

(0.004)

Reject (0.022)

hki 1.853

(0.135)

1.893

(0.139)

Do not reject (0.099)
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decayed from 23.3% in V2.4.2 to 8.9% in V10.0.0. This change
might be attributed to the growth rate of the support for var-

ious architecture ports, which is faster than that of the real-
time scheduler functionality. However, it is notable that the
real-time scheduler is crucial for FreeRTOS. We can see that

the proportions of task function nodes in most versions
account for more than 10%.
Furthermore, when comparing the discrepancy between the

real-time scheduler of FreeRTOS and a typical non-real-time
scheduler of Linux OS, we build scheduler networks based
on the source codes in the scheduler implementation files of

FreeRTOS and Linux OS. It is noted that the scheduler of
Linux OS is mainly implemented in the file /kernel/sched.c
(or /kernel/sched/core.c starting from version 3.3) of the kernel
source code. Obviously, these two scheduler networks are sub-

networks of the FreeRTOS and Linux OS networks, respec-
tively. To ensure the validity of results, we choose 51 major
versions for Linux OS, ranging from versions 2.6.11 to 4.1,

for which the range of release dates is close to that of the Free-
RTOS versions. The null hypothesis is that for the two types of
schedulers, the network property is sampled from the same dis-

tribution. In this study, we choose the clustering coefficient C
and average degree hki (i.e., average out-/in-degree) for com-
parison. The result is verified by means of the Wilcoxon-

Mann-Whitney test.42

The comparison result is shown in Table 4. For a given
criterion (a ¼ 0:05), after performing the test, we obtained
a p value of 0.022 for the clustering coefficient, which means

that the null hypothesis can be rejected at a 95% confidence,
while for average degrees, the null hypothesis cannot be
rejected. It can be observed that the average clustering coef-

ficient for the Linux OS scheduler network is larger than
that of the FreeRTOS scheduler network. This finding
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illustrates that the interactions among the function imple-
mentations of the non-real-time scheduler of Linux OS are
tighter than those of the real-time scheduler of FreeRTOS.

The result is attributed to the non-real-time scheduler of
Linux OS being more complex than the real-time scheduler
of FreeRTOS, due to the more complex application domains

of Linux OS. The real-time scheduler of FreeRTOS supports
priority-based preemptive, cooperative, and hybrid opera-
tions.36 Its scheduler algorithm is the highest priority first,

while tasks of equal priority are executed in a round-robin
fashion. Comparatively, for the Linux OS scheduler, the
classifications of processes (e.g., interactive, batch, or real-
time processes43) or the scheduler algorithms (e.g., com-

pletely fair scheduler44) are more complex. Therefore, it is
reasonable that the non-real-time scheduler network of
Linux OS has a larger clustering coefficient.

4. Conclusions

In this paper, we have performed an empirical investigation of

the FreeRTOS real-time operating system, a commonly used
RTOS for UAVs, in terms of evolution. We have collected
85 releases of FreeRTOS that range from V2.4.2 to V10.0.0,

and conducted evolution analysis from a complex network per-
spective, concentrating on four research aspects: evolution of
network properties, evolution of k-core structures, evaluation

of functionality changes, and evolution of the real-time sched-
uler. Analytical results illustrate that the evolution of Free-
RTOS well reflects the characteristics of small storage space
support, various architectural designs, and high real-time

requirement for embedded platforms.
There have been several interesting observations that could

be useful for reliability analysis of UAV RTOSs. For example,

the continuing growth of the size of FreeRTOS and the steady
evolution of the graph coreness are well in accordance with
Lehman’s laws of software evolution. These network metrics

can be utilized to measure the evolutions of software systems.
In addition, the k-core analysis identifies the most crucial
structure of FreeRTOS, which could instruct developers to

pay more attentions to this region for testing UAV RTOSs.
Moreover, the proposed metrics based on the k-core analysis
could be utilized to evaluate major functionality changes of
FreeRTOS, which have great potential to be adopted in other

software systems for evaluation of functionality changes. A
comparison of clustering coefficients between a real-time
scheduler of FreeRTOS and a non-real-time scheduler of

Linux OS demonstrates that the discrepancy between these
two types of OS schedulers can be distinguished by utilizing
the network metric.
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3. Erdös P, Rényi A. On random graphs I. Publ Math Debrecen

1959;6:290–7.

4. Merton RK. The Matthew effect in science. Science 1968;159

(3810):56–63.

5. Watts DJ, Strogatz SH. Collective dynamics of ’small-world’

networks. Nature 1998;393(6684):440–2.

6. Barabási AL, Albert R. Emergence of scaling in random networks.

Science 1999;286(5439):509–12.

7. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, et al.

A protein interaction map of Drosophila melanogaster. Science

2003;302(5651):1727–36.

8. Cohen R, Erez K, Ben-Avraham D, Havlin S. Breakdown of the

Internet under intentional attack. Phys Rev Lett 2001;86(16):3682.

9. Du WB, Liang BY, Yan G, Lordan O, Cao XB. Identifying vital

edges in Chinese air route network via memetic algorithm. Chinese

J Aeronaut 2017;30(1):330–6.

10. Saberi M, Mahmassani HS, Brockmann D, Hosseini A. A

complex network perspective for characterizing urban travel

demand patterns: Graph theoretical analysis of large-scale

origin–destination demand networks. Transportation 2017;44

(6):1383–402.

11. Wang WX, Wang BH, Yin CY, Xie YB, Zhou T. Traffic dynamics

based on local routing protocol on a scale-free network. Phys Rev

E 2006;73(2):026111.

12. DuWB, Zhou XL, Lordan O, Wang Z, Zhao C, Zhu YB. Analysis

of the Chinese Airline Network as multi-layer networks. Transport

Res E-Log 2016;89:108–16.

13. Lordan O, Sallan JM. Analyzing the multilevel structure of the

European airport network. Chinese J Aeronaut 2017;30(2):554–60.

14. Du WB, Ying W, Yan G, Zhu YB, Cao XB. Heterogeneous

strategy particle swarm optimization. IEEE Trans Circuits-II

2017;64(4):467–71.
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