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ABSTRACT

Unmanned aerial vehicles (UAVs) are becoming increasingly im-

portant and widely used in modern society. Software bugs in these

systems can cause severe issues, such as system crashes, hangs, and

undefined behaviors. Some bugs can also be exploited by hackers

to launch security attacks, resulting in catastrophic consequences.

Therefore, techniques that can help detect and fix software bugs in

UAVs are highly desirable. However, although there are many exist-

ing studies on bugs in various types of software, the characteristics

of UAV software bugs have never been systematically studied. This

impedes the development of tools for assuring the dependability

of UAVs. To bridge this gap, we conducted the first large-scale em-

pirical study on two well-known open-source autopilot software

platforms for UAVs, namely PX4 and Ardupilot, to characterize

bugs in UAVs. Through analyzing 569 bugs from these two projects,

we observed eight types of UAV-specific bugs (i.e., limit, math, in-

consistency, priority, parameter, hardware support, correction, and

initialization) and learned their root causes. Based on the bug taxon-

omy, we summarized common bug patterns and repairing strategies.

We further identified five challenges associated with detecting and

fixing such UAV-specific bugs. Our study can help researchers and

practitioners to better understand the threats to the dependability

of UAV systems and facilitate the future development of UAV bug

diagnosis tools.
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(a) Plane (b) VTOL (c) Copter

Figure 1: Example Drone Types Supported by PX4 [43].

1 INTRODUCTION

In recent years, the use of unmanned aerial vehicles (UAVs) is be-

coming more and more popular in daily life [54]. As a typical cyber-

physical system (CPS), UAVs are context-aware. A UAV system per-

ceives the external physical environment through various sensors

and reacts in accordance with the external information [37, 47, 49].

There are three steps for a CPS to interact with physical environ-

ment, namely, sensing, decision-making, and action-taking [46].

Since UAVs are highly correlated with physical environment, the

underlying software of a UAV differs significantly from traditional

software, whose inputs are mostly stable and not interfered by ex-

ternal environment. On the one hand, the system inputs of a UAV

can be dynamically fluctuating and uncontrollable with respect
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Figure 2: Root Causes of UAV-specific Bugs.

to the changes of environment. It is necessary for developers to

consider the changes of environment proactively, making it chal-

lenging to build a reliable UAV system [54]. On the other hand,

various configurations of sensors and hardware (e.g., the sensing

range of a temperature sensor) should be taken into account during

UAV’s software development. Ignoring these configurations (e.g.,

parameters and limits) can cause reliability issues. In addition, some

UAV systems are designed for more than one types of hardware.

For example, as an open-source flight control software for autopilot,

PX41 supports multiple types of drones, including Planes, VTOLs

(Vertical Take-Off and Landings),and Copters, as shown in Fig. 1.

Since different devices may have different functional limitations,

developers also need to consider the correspondence between dif-

ferent functions and hardware models to ensure the reliability of

the whole system.

Although a lot of progress has been made in developing ad-

vanced UAVs, the reliability and safety of such systems are still

major concerns, due to the aforementioned challenges [8]. Soft-

ware bugs in UAV systems have caused property damage to the

users [33]. Hence, there is an urgent need to analyze and under-

stand the characteristics of bugs in UAV software in order to guide

developers to build more reliable and secure UAV systems. Exist-

ing studies [32, 54] have explored some common bugs that might

appear in both UAV software and traditional software, but they do

not focus on UAV-specific bugs.

1https://px4.io/

In this work, we present the first empirical study of UAV-specific

bugs. Our study aims to provide practical yet systematic knowledge

of UAV-specific bugs summarized and categorized from two major

open-source autopilot software platforms (i.e., PX4 and Ardupilot)

for drones. For our study, we collected 569 bugs from these two

popular platforms on GitHub. Among those bugs, 168 are UAV-

specific. We manually analyzed these 168 bugs by investigating

their bug reports, source code, patches, and historical development

data. Through our analyses, we observed eight types of root causes

of UAV-specific bugs, as shown in Fig. 2. We have also summarized

five challenges in detecting and fixing these bugs, as highlighted

below.

• Challenge 1: It is difficult to design general test oracles to help

locate bugs in UAV systems due to the unpredictability of system

outputs and the need to evaluate system behavior from multiple

perspectives.

• Challenge 2: Many bugs in UAV systems are difficult to repro-

duce in the presence of a dynamically changing physical envi-

ronment.

• Challenge 3: Developing UAV software to support a variety of

hardware often causes compatibility and dependence problems,

which are hard to detect via code analysis.

• Challenge 4: Fixing low-level software bugs related to hardware

and various system configurations is highly challenging.
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Figure 3: Flight Stack of PX4.

• Challenge 5: Comparing the expected value with the actual

value at a specific program point is a common method of fault

localization. However, fault localization is generally difficult for

UAV systems since a value or state at a specific program point is

often unpredictable.

Our study can help researchers and developers to gain a better

understanding of UAV-specific bugs and provide assistance for

future UAV system development and research. To conclude, our

paper makes the following contributions:

• We conduct the first empirical study of the root causes of UAV-

specific bugs, which could assist future research on detecting and

fixing software bugs in UAV systems.

• We make an analysis of the challenges in detecting and fixing

UAV-specific bugs.

• We release the replication package and the dataset of UAV-specific

bugs collected from PX4 and Ardupilot at https://doi.org/10.5281/

zenodo.4898868.

The rest of the paper is organized as follows. Section 2 briefly

gives the background knowledge of CPS dependability and the

two examined projects (PX4 and Ardupilot). Section 3 describes

the methodology of our empirical study, including the data col-

lection and bug classification procedures. Section 4 presents the

analysis of the root causes firstly and then presents the challenges

of UAV-specific bugs detecting and fixing. Section 5 discusses our

suggestions to practitioners. Section 6 summarizes the threats to va-

lidity, while Section 7 introduces the related work. Finally, Section 8

concludes the paper.

2 BACKGROUND

2.1 Cyber-Physical System Dependability

The term Cyber-physical system (CPS), widely referred in pervasive

computing, was proposed in the 1990s by Weiser [55]. Recently,

the development of CPSs has undergone considerable progress,

especially in relation to drones, self-driving cars, and various IoT

devices. However, developing and deploying a dependable CPS is

still a difficult problem.

The three most important factors that affect the dependability

of CPSs are context inconsistency, uncertainty, and faults in the

system [54]. A CPS uses context to capture dynamic changes in

the external physical environment. Context such as pressure, loca-

tion, and temperature is captured by sensors. Context inconsistency

means the inconsistency between the physical environment and

the perceived context of the system, which is often manifested as

environment noises. To explain conveniently, in our paper, we do

not divide UAV systems into the physical system (a.k.a. the plant

in control systems) and the controller when we talk about system

input and output. Specifically, in our paper, the inputs of UAV sys-

tems involve the user input (e.g., command-line inputs) and the

input from the physical environment. When we talk about the non-

determinism problem of UAV system inputs, we are referring to the

system input disturbances in the physical environment. UAV sys-

tems outputs in our paper are continuous physical trajectories [32].

2.2 PX4 and Ardupilot

Our study is performed on two popular open-source UAV platforms

on GitHub, namely PX4 and Ardupilot. PX4 [44] is an open-source

flight control system for drones and other unmanned vehicles. This

is an active and well-maintained platform. It represents state of

the art in the field of open source UAV system development. Fig. 3

shows the flight stack of PX4, which is a collection of guidance, nav-

igation, and control algorithms for autonomous drones. As a typical

CPS, PX4 consists of three subsystems: sensing, decision-making,

and action-taking. We introduce several major components of the

subsystems in the following. The estimator computes a vehicle state

(mainly including position and attitude) using sensor inputs. The

controller takes a setpoint from the navigator and an estimated

state from the estimator as inputs. It controls the vehicle state until

it matches the setpoint. For example, the position controller takes

a position setpoint and an estimated position as inputs, and out-

puts the attitude and thrust setpoint to move the vehicle towards

a desired position. The mixer translates the force commands into

the individual motor commands and feeds motor commands to the

actuator [40, 44, 53].

Ardupilot [3] is another open-source UAV platform for drones

and unmanned vehicles. Ardupilot works on a wide variety of

hardware to support multiple types of unmanned vehicles. It is

constantly evolving based on rapid feedback from a large commu-

nity of users and developers. The online community also provides

massive bug data for our research.
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Table 1: The Statistics of the Subjects Collected in Our Study

Project name Stars Commits Lines of Code Number of Files Closed Issues Bugs UAV-specific Bugs

PX4 3,500 32,533 609,135 3,384 5,082 201 65

Ardupilot 4,900 42,826 1,505,836 3,291 3,478 368 103

3 METHODOLOGY

3.1 Data Collection

To obtain our initial taxonomy of UAV software bugs, we consid-

ered two popular and well-known open-source UAV systems, PX4

and Ardupilot. We did not choose other open-source projects, e.g.,

Openpilot [10] and Paparazzi [31], because they are not actively

maintained and the number of issues is small. To collect bugs from

the two projects, we defined the selection criteria consisting of the

following rules:

Rule 1. The issue is closed. A closed issue means it has been

resolved, therefore, such an issue report contains information that

is helpful for bug classification and understanding.

Rule 2. The issue is labeled with bug. Developers usually label

issue reports according to the characteristics of the reported issues.

A report with a bug label typically means that the described issue

is caused by a system software defect, not other external factors.

Rule 3. There is a patch to fix the reported bug. The patch

normally contains developers’ comments and the code to fix the

bug, which allows us to understand the root cause of bugs more

easily.

Based on the above rules, we collected 569 real bugs out of

8,560 closed issues from the projects PX4 and Ardupilot on GitHub.

Among them, PX4 contains 5,082 closed issues and 201 bugs, and

Ardupilot has 3,478 closed issues and 368 bugs. As shown in Table 1,

these two projects contain more than two million lines of code and

over 70,000 commits.

3.2 Bug Classification

To characterize the root causes of the UAV-specific bugs, we ana-

lyzed the data by following the widely-adopted open coding pro-

cedure [7, 39]. Specifically, we performed an iterative manual la-

beling process that lasted half a year involving two annotators

(i.e., co-authors of the paper), whom all have several years of CPS

development experience. The iterations are as follows:

Iteration 1. For the 569 bugs, we analyzed three sources of

data, i.e., bug reports (including comments from developers and

users), commits, and bug patches on GitHub. According to our own

understanding, we described and labeled each bug independently.

We then compared the respective labeling results and analyzed

those with large differences. With this iteration, we came up with

a preliminary classification and labeling strategy.

Iteration 2. We independently labeled all bugs for a second

round based on the preliminary classification and labeling strategy.

We then compared the results and found that there were still a few

differences in the labels. To resolve the differences, we discussed to

clarify the boundaries between the labels. In the end, we slightly

revised our bug classification and labeling strategy.

Iteration 3. We carried out a third iteration by going through

all bugs following the revised classification and labeling strategy.

Finally, we reached a consensus on the taxonomy of bug root causes.

After three iterations, each bug is labeled as one leaf category of

our root cause taxonomy2, which is shown in Fig. 2. As explained

later, the leaf categories in our taxonomy are orthogonal, meaning

that no bugs in our dataset can be classified into multiple categories

from the perspective of root causes.

With the analysis of root causes, we identified 168 UAV-specific

bugs from the 569 bugs following two rules. First, we considered

a bug as UAV-specific if its root cause rarely exists in traditional

software (e.g., bugs caused by the noisy physical environment).

Second, if the root cause of a bug exists in traditional software but

the bug has a much higher probability of appearing in UAV systems,

we also considered it as UAV-specific. For example, the bugs in the

category “hardware supportž appear frequently in UAV systems

due to the need to support many hardware platforms. For the char-

acteristics of traditional software bugs, we referred to two previous

empirical studies [52, 57] on bugs in Linux, Mozilla projects, and

Apache projects. Due to the page limits, our subsequent discussion

will focus on UAV-specific bugs.

4 ROOT CAUSES AND CHALLENGES

With the identified UAV-specific bugs, we conducted an empirical

study to understand the bugs’ root causes and the challenges in

dealing with these bugs. Specifically, we explore the following three

research questions (RQs):

• RQ1:What are the common root causes of UAV-specific bugs?

• RQ2: What are the challenges in detecting UAV-specific bugs

and how to address them?

• RQ3: What are the challenges of fixing UAV-specific bugs and

how to address them?

By studying RQ1, we will understand how UAV-specific bugs

arise. The root causes will guide the explanations of the findings

for RQ2 and RQ3. Besides, in RQ2 and RQ3, we will investigate

the new challenges imposed by the key differences between UAV

systems and traditional software. After answering the three RQs,

we also provide several suggestions to help developers build and

debug UAV systems.

4.1 RQ1: Root Causes of Bugs

After conducting the manual classification described in Section 3.2,

we observed that the root causes of the 168 UAV-specific bugs can be

classified into eight categories: limit, math, inconsistency, priority,

parameter, hardware support, correction, and initialization. Fig. 2

2Note that this is not the only way to categorize the bugs in our dataset. Our current
taxonomy is derived based on our knowledge and CPS development experience.
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Table 2: Example Limits of PX4

Name Description Min-Max Default Units

HDRIFT Horizontal drift speed to use GPS 0.1-1.0 0.3 m/s

VDRIFT Vertical drift speed to use GPS 0.1-1.5 0.5 m/s

EKF2_REQ_EPV Required EPV to use GPS 2-100 8 m

FW_ACRO_Z_MAX Acro body z max rate 10-180 45 degree

MT_FPA_MIN Minimal flight path angle setpoint -90.0-90.0 -20.0 degree

shows the number of bugs of these root causes. In the following,

we will discuss each type of root causes in detail.

4.1.1 Root Cause 1: Limit. Definition: limit bugs are those caused

by improper parameter limits. A UAV system is often compati-

ble with a variety of different hardware, hence it is accompanied by

a number of hardware limits. For example, PX4 has 1,306 limits [45],

some of which are shown in Table 2. In practice, it is difficult for

developers to handle a large number of limits correctly. When they

make mistakes, the UAV systems may suffer from various types of

limit bugs. In particular, we observed the following three subtypes

of bugs of root cause 1:

• Limit Conflict. Definition: developers set parameter limits that

are in conflict with each other. Due to various relationships be-

tween limits, two limits may have conflicts in their scope when

set by developers. A typical example is issue #7097 [23] in PX4. In

this issue, pitch limits are applied before applying setpoint offset,

which means that the pitch limit does not consider the offset of

pitch setpoint. This conflict will cause the pitch limit value to

increase by one unit of the setpoint offset. Listing 1 shows the

patch to fix the bug #7097. To eliminate the conflict, the pitch

limits need to subtract the offset.

• Limit Checking Missing. Definition: developers miss the limit

checking for the computation result. Limits checking is frequently

required in a UAV system, but developers may forget to check

certain limits. In issue #7535 [24] of PX4, developers missed the

limit checking of the setpoint after the velocity computation has

been done. This issue caused the drone to fly away. Listing 2

shows that the developers added the constraints for all directions

of the velocity setpoints to fix the bug.

• Limit Range. Definition: the range of the limit is not right for

some hardware or violates certain system requirements. The range

of some limits profoundly impacts the system behavior. Due to

the lack of hardware knowledge, the limit range set by developers

may compromise the stability of a UAV system. An example is

issue #5305 [17] of PX4. The developers set the range of the

actuator control parameter to be -1 to 1, which will enable the

negative thrust. A right range should be 0 to 1. In Listing 3,

the developers set the correct range to fix the problem of wing

throttle because a drone with fixing wings will crash with a

negative thrust.

4.1.2 Root Cause 2: Math. Definition: math bugs arise from

the misuse of mathematical formulas. UAV systems often rely

on various complex control and estimation algorithms. Comparing

to traditional software, UAV software is more prone to math bugs.

- radians(_parameters.pitch_limit_min),

- radians(_parameters.pitch_limit_max),

+ radians(_parameters.pitch_limit_min) - _parameters.

pitchsp_offset_rad ,

+ radians(_parameters.pitch_limit_max) - _parameters.

pitchsp_offset_rad ,

Listing 1: The Fix of Issue #7097.

+ // special velocity setpoint limitation for smooth

takeoff (after slewrate !)

if (_in_takeoff) {

_in_takeoff = _takeoff_vel_limit < -_vel_sp (2);

// ramp vertical velocity limit up to takeoff speed

- _takeoff_vel_limit += _params.tko_speed * dt /

_takeoff_ramp_time.get();

+ _takeoff_vel_limit += -_vel_sp (2) * dt /

_takeoff_ramp_time.get();

// limit vertical velocity to the current ramp

value

_vel_sp (2) = math::max(_vel_sp (2), -

_takeoff_vel_limit);

}

+ // make sure velocity setpoint is constrained in all

directions (xyz)

+ float vel_norm_xy = sqrtf(_vel_sp (0) * _vel_sp (0) +

_vel_sp (1) * _vel_sp (1));

+ if (vel_norm_xy > _vel_max_xy) {

+ _vel_sp (0) *= (_vel_max_xy / vel_norm_xy);

+ _vel_sp (1) *= (_vel_max_xy / vel_norm_xy);

+ }

+ _vel_sp (2) = math:: constrain(_vel_sp (2), -_params.

vel_max_up , _params.vel_max_down);

Listing 2: The Fix of Issue #7535.

Sometimes, it can be very difficult for developers to accurately

select the most suitable mathematical formula. In our dataset, there

are two major subtypes of math bugs:

• WrongCalculationMethod.Definition: developers use the wrong

mathematical formulas/operations. Developers use the wrong cal-

culation formula, which can produce abnormal system outputs.

In issue #8628 [29] of PX4, the developer incorrectly computed

the mixing tables, which are a part of the output in mixer. As

we mentioned in the background section, the mixer outputs the

value to the actuator. Due to this bug, the drone will exhibit

abnormal flight status. Listing 4 shows the fix of issue #8628.

• Need Improvement. Definition: the mathematical formulas used

in program are imprecise or inefficient. In some cases, there is no

obvious error in the use of mathematical formulas or operations,

but the calculation results are not accurate enough. This can
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+ /* fixed wing: scale throttle to 0..1 and other channels to -1..1 */

+ if (_actuators[index]. output[i] > PWM_DEFAULT_MIN / 2) {

+ if (i != 3) {

+ /* scale PWM out PWM_DEFAULT_MIN .. PWM_DEFAULT_MAX us to -1..1 for normal channels */

+ &msg.controls[i] = (_actuators[index]. output[i] - pwm_center) / (( PWM_DEFAULT_MAX -

PWM_DEFAULT_MIN) / 2);

+ } else {

+ /* scale PWM out PWM_DEFAULT_MIN .. PWM_DEFAULT_MAX us to 0..1 for throttle */

+ msg.controls[i] = (_actuators[index]. output[i] - PWM_DEFAULT_MIN) / (PWM_DEFAULT_MAX -

PWM_DEFAULT_MIN);

+ }

+ }

Listing 3: The Fix of Issue #5305.

float out = (roll * _rotors[i]. roll_scale +

pitch * _rotors[i]. pitch_scale) *

roll_pitch_scale +

yaw * _rotors[i]. yaw_scale +

- thrust + boost;

+ (thrust + boost) * _rotors[i].

thrust_scale;

- out *= _rotors[i]. out_scale;

Listing 4: The Fix of Issue #8628.

+ // The lower the voltage the more adjust the estimate

with it to avoid deep discharge

+ const float weight_v = 3e-4f * (1 - _remaining_voltage)

;

+ _remaining = (1 - weight_v) * _remaining + weight_v *

_remaining_voltage;

+ // directly apply current capacity slope calculated

using current

+ _remaining -= _discharged_mah_loop / _capacity.get();

+ _remaining = math::max(_remaining , 0.f);

Listing 5: The Fix of Issue #8198.

be solved by using a better calculation method. For instance,

as shown in Listing 5, developers fixed the issue #8198 [28] of

PX4 by changing the old battery estimation algorithm to a more

precise algorithm. Besides such cases, some math bugs are caused

by inefficient computations and can be solved by fine-tuning the

inefficient algorithm.

4.1.3 Root Cause 3: Inconsistency. Definition: the root cause of

the bugs is related to inconsistency between hardware and

software. Bugs often arise when developers are not familiar with

the consistency between hardware and software in a UAV system.

A typical case is that developers incorrectly use the function with a

wrong drone models. Listing 6 gives an example [25]. The develop-

ers intended to use the function land_detector with multi-copter.

Since land_detector is a function for another drone model VTOL,

the drone cannot take offwith this inconsistent function. In addition

to the inconsistency between functions and drone models, there

are also inconsistencies between hardware interfaces and interface

protocols, inconsistencies between sensors and libraries, and so on.

We observed that inconsistency bugs are more commonly found

in the UAV system designed for multiple devices and may cause

drone crashes when critical functions fail to work. Even worse, due

to various complex and diverse inconsistencies between hardware

pwm_out_sim mode_pwm

sensors start

commander start

- land_detector start multicopter

+ land_detector start vtol

navigator start

ekf2 start

vtol_att_control start

Listing 6: The Fix of Issue #7737.

- m_sensor_data.pressure_pa = convertPressure(

pressure_from_sensor) / 256.0;

m_sensor_data.temperature_c = convertTemperature(

temperature_from_sensor) / 100.0;

+ m_sensor_data.pressure_pa = convertPressure(

pressure_from_sensor) / 256.0;

m_sensor_data.last_read_time_usec = DriverFramework ::

offsetTime ();

m_sensor_data.read_counter ++;

Listing 7: The Fix of Issue #5243.

and software, it could be very difficult for developers to completely

avoid such bugs.

4.1.4 Root Cause 4: Priority. Definition: the root cause of the

bugs is related to hardware or software priority issues.Unlike

traditional software priority bugs, some of the UAV-specific priority

bugs are caused by the hardware priority. These types of bugs are

hard to be observed, because there are no obvious mistakes in the

program logic andmost such bugs do not cause significant deviation

of system performance. Listing 7 gives a typical example of this type

of bugs [19]. The patch which fixes the bug changes the order of

pressure and temperature conversion. As we can see from the code

snippet, the affected two statements have no common variables

and it seems that such a fix would not cause any semantic changes.

However, in many UAV systems, according to the bmp280 data

sheet [50] and the sample pressure and temperature conversion

code, the temperature conversion must be done before the pressure

conversion, as the latter uses some results from the former [19]. In

other words, there exists hidden data dependence between the two

sensors. Such priority bugs require developers to have sufficient

knowledge of the underlying hardware. Unfortunately, due to the

diversity of hardware in UAV systems (e.g., different sensors and

development boards), this requirement is often impractical for UAV

software developers.
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_parameter_handles.land_slope_angle = param_find("

FW_LND_ANG");

_parameter_handles.land_H1_virt = param_find("

FW_LND_HVIRT");

- _parameter_handles.land_flare_alt_relative = param_find

("FW_LND_FL_ALT");

+ _parameter_handles.land_flare_alt_relative = param_find

("FW_LND_FLALT");

_parameter_handles.land_flare_pitch_min_deg =

param_find("FW_LND_FL_PMIN");

_parameter_handles.land_flare_pitch_max_deg =

param_find("FW_LND_FL_PMAX");

_parameter_handles.land_thrust_lim_alt_relative =

param_find("FW_LND_TLALT");

Listing 8: The Fix of Issue #4745.

4.1.5 Root Cause 5: Parameter3. Definition: the root cause of

bugs is related to improper handling of parameters. The pa-

rameters in a UAV system are very complicated. For instance, PX4

has more than 1,000 parameters. Most parameters include a limit

and a default value, which are defined by developers based on the

relevant function module attribute. As parameter settings affect the

performance of a UAV system, improper handling of parameters

may induce bugs. In our study, we found the following two major

subtypes of root causes for parameter of bugs:

• ParameterMissing.Definition: the parameter setting is not enough

to meet the requirements of system functions. Parameter setting is

generally based on existing functional requirements. With the

increase of system functions, if some relevant parameters are not

set accordingly, the UAV system may exhibit unexpected behav-

ior. In addition, the existing parameters may also be insufficient

if developers fail to consider all possible scenarios when setting

the parameters. In issue #6444 [20] of PX4, the drone started

to plummet when the users wanted to nudge the drone during

landing. To fix this bug, the developers added a parameter to

allow users to operate the stick during landing.

• Parameter Misuse. Definition: such bugs are caused by the mis-

use of certain parameters. Since parameters have diversified char-

acteristics, in order to use them correctly, developers need to

understand the functions related to the parameters, the naming

of the parameters, as well as the scope of the parameters. This is a

non-trivial task and we observed various parameter misuses. For

example, in issue #4745 [16] of PX4, the mistaken use of the two

parameters FW_LND_FL_ALT and FW_LND_FLAT was caused by a

similar naming. The patch to fix the bug is shown in Listing 8.

4.1.6 Root Cause 6: Hardware support. Definition: the root cause

of the bugs is related to the flawed support of certain hard-

ware. For this category, we only included the bugs related to the

driver programs of a UAV’s underlying hardware. There are also

hardware support bugs in traditional software systems. We found

that the hardware support bugs in UAV systems are no different

to those in traditional systems. Most of them are caused by driver

defects (e.g., compatibility issues). We call this type of bugs UAV-

specific because the proportion of such bugs in a UAV system is

3We did not put limit-related bugs in the root cause “parameterž because not all
parameters have the limit property.

AP_Notify ::flags.pre_arm_check = true;

AP_Notify ::flags.pre_arm_gps_check = true;

+ // initialise battery

+ battery.init();

// init baro before we start the GCS , so that the CLI

baro test works

barometer.set_log_baro_bit(MASK_LOG_IMU);

barometer.init();

Listing 9: Pull Request #11208.

large (i.e., 17.3%), as the UAV hardware support is generally not as

good as in a traditional system (e.g., Linux).

4.1.7 Root Cause 7: Correction. Definition: the root cause of

the bugs is related to the correction of sensor data. The data

obtained by some sensors need to be corrected before they are used.

For example, the GPS data can be disturbed by various environmen-

tal conditions (e.g., temperature) and therefore need to be corrected

to ensure accuracy. Since intensive data corrections are required in

a UAV system, developers may easily miss some correction process,

resulting in various unexpected bugs.

4.1.8 Root Cause 8: Initialization. Definition: the root cause of

bugs is related to the initialization (or reset) of certain val-

ues. Similar to data correction, we found that missing initialization

is also a typical type of mistakes made by developers. Even some

developers remember to do the initialization but they may often

forget to redo the initialization (i.e., reset values) during the com-

putation. Listing 9 shows an example where the developer forgets

to initialize the battery during the calculation [30].

4.2 RQ2: Challenges in Bug Detection

To address RQ2, we first classified the UAV-specific bugs by answer-

ing the following two questions:

(1) Can the bugs be triggered by deterministic inputs?

(2) Can the bugs cause severe abnormal behavior (e.g., UAV

crash, UAV unexpected trajectories)?

The first question concerns whether the bugs can be triggered

easily, while the second question concerns whether the bugs can

be observed or captured easily. If the answers to both questions

are “Yesž, the chances of detecting such bugs are relatively high.

If the answers to both questions are “Nož, the bugs could be very

difficult to detect. For RQ2, we focused on analyzing bugs with two

“Nož answers. Besides, we also analyzed the bugs with multiple

pages of comments on GitHub because sometimes this means that

developers need a lot of discussions to determine the location and

cause of bugs before bug fixing. Based on the characteristics of UAV

systems and the studied bugs, We identified three challenges for

detecting UAV-specific bugs.

4.2.1 Challenge 1: Test Oracle Design. In traditional programs, an

input usually corresponds to one or more specific outputs. This

relationship can help check the correctness of a program [61]: when

inputting a value, if the program outputs an unexpected state or

value, the program is considered buggy. Here, the expected output

of the program is a test oracle. It is known that designing an oracle
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Figure 4: Which Trajectory (a or b) is Correct? [32]

for bug detection is a difficult problem when testing traditional soft-

ware [4, 12, 14, 58]. The test oracle design is even harder for UAV

systems, because the relations between the input and the output

of a UAV is often non-deterministic. Typically, the input of a UAV

can be divided into two parts: (1) the user input and (2) the input

from the physical environment. The user input, such as the input

from the drone’s controller and the input from the command line

interface of a simulator, is generally well defined. But the input

from the physical environment is obtained by sensors. These inputs

are highly dynamic and cannot be precisely defined or predicted.

Althoughmany developers have used parameter constraints to limit

the range of the inputs from the physical environment, the vast

volume of combinations of such inputs are still hard to be explored

during testing. On the other hand, the UAV outputs generally con-

tain continuous physical trajectories [32]. Given a command input

to a drone, e.g., fly from point A to point B, if the drone outputs

two different trajectories that both complete the task (as shown in

Fig. 4), it would be hard to determine which trajectory is correct.

Furthermore, even if a drone outputs a physical trajectory that

is exactly the same as in a previous successful test, the behavior

can be wrong when other factors (e.g., wind speed) are considered.

Because of this reason, to effectively test UAV systems, one has to

holistically consider multiple factors. This is clearly challenging

and it could be very difficult to determine an ideal oracle for UAV

testing. In a recent study [32], the authors presented a trajectory

prediction method to generate the test oracle for UAV systems.

However, the application scenario of this method is limited to con-

tinuous and differentiable physical trajectories, and the correctness

of the system is determined by simply judging whether the physical

trajectory is smooth or not, without considering other factors.

By studying the bug comments, we found that UAV developers

heavily relied on experts to judge the correctness of UAV outputs.

As the judgment of the experts highly depends on their experience

and domain knowledge, such human oracles may not be reliable.

It is also difficult for experts to determine the correctness of UAV

behaviors from one single output (e.g., trajectory). Future research

may focus on the oracle problem of UAV testing and explore how

to automate the testing process. We believe that it is also important

to design testing frameworks that allow experts to clearly define

criteria to judge the correctness of UAV behavior, so as to improve

the reliability and reusability of human oracles.

4.2.2 Challenge 2: Bug Reproducing. Being able to reproduce a bug

is crucial for verifying the correctness of bug detection in UAV

systems [5, 6, 34]. The physical environment of UAV systems is

non-deterministic, and it is possible that two executions behave

differently in different physical environments. When reproducing a

UAV-specific bug, the first step is typically to reproduce the running

environment. However, the physical environment is highly dynamic

and noisy, which means that it cannot be reproduced perfectly in

the real world. Via our analysis of bug reports, we found that UAV

developers mainly rely on simulators to reproduce bugs. Usually,

a physical environment-level simulation is available and simple

enough. Nonetheless, the simulation of drone systems is often sim-

plified and unable to catch all the imperceptible changes (either

system-level or environment-level) for bug detection. Implement-

ing highly realistic simulation is expensive in terms of human effort

and there are also many technical challenges (e.g., how to model

and simulate uncertainty). Besides, the simulators may have bugs,

which could bring new problems when reproducing UAV-specific

bugs.

Traditional software also suffers from the non-determinism prob-

lem. However, in UAV systems, the problem becomes much more

common because almost every execution could be affected by non-

determinism. This problem needs more research attention.

4.2.3 Challenge 3: Hardware Dependence. Hardware dependence

is a situation where there is data dependence between different

hardware in a UAV system. While the data dependence problem

in traditional software has been well explored, we observed that

the UAV bugs caused by hardware dependence cannot be detected

with the existing techniques. This is because some data dependence

in UAV systems could be “hiddenž in the hardware level. In the

issue #5243 mentioned earlier, the developers triggered the bad

performance of the drone. Because of hardware dependence, no bug

can be found by analyzing the source code. This bug was discovered

by a developer who was working on the bmp280 data sheet, which

describes the hardware dependence between the pressure sensor

and temperature sensor.

The computations in a UAV system are driven by the sensor

inputs, which are limited by the parameter settings (see Table 2 for

examples). However, the parameter settings rarely include the hard-

ware dependence or the priority of sensors. Finding bugs caused

by implicit hardware dependence could be a huge challenge for

UAV software developers who lack knowledge of the underlying

hardware. Future research may study how to address this challenge

to ease bug finding in UAV systems.

4.3 RQ3: Challenges in Bug Fixing

To address RQ3, we first classified the UAV-specific bugs by answer-

ing the following questions:

(A) Is the bug fixed quickly (i.e., in a week)?

(B) Is the bug fixed with less than three patches?

Question (A) concerns the fixing time and question (B) concerns

the difficulty of fixing. For RQ3, we then manually analyzed the

bugs that have at least one “Nož answer of the two questions (we

call them NA and NB bugs) to find out the reason why developers

took a long time to fix the bugs and why the bug fixing requires

many (three or more) patches. With the analysis, we identified two

challenges in fixing bugs in UAV systems.

27



An Exploratory Study of Autopilot Software Bugs in Unmanned Aerial Vehicles ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

4.3.1 Challenge 4: Hardware Related Bugs Fixing. Developers took

a lot of time to fix some hardware related bugs. For example, 25

UAV-specific bugs in PX4 took developers more than one week to

fix and 22 out of the 25 bugs are hardware-related bugs4. Bug fixing

in a traditional program often aims to find solutions in the source

code. However, in a UAV system, it is difficult for developers to

find solutions from source code to fix hardware-related bugs. For

example, in relation to issue #5243, which we have mentioned in

Section 4.1.4, there is no obvious fault at the code level. Hence, it

is hard for the developers to find a solution to such bugs in source

code. Even if the developers know the properties of the hardware, it

could still be difficult to fix such bugs. Due to the interdependence

of hardware and software, unilateral compliance with hardware

properties does not solve some bugs in UAV systems. For the issue

#5305, the hardware parameter limits can be set to “-1 to 1ž accord-

ing to the hardware properties, but in practice, the drone’s thrust

cannot be set to a negative value. Therefore, when fixing such bugs,

developers need to have both software and hardware knowledge,

and also need to consider the usage scenarios of the system. What’s

more, considering that UAV systems also need to be compatible

with different drone models, fixing hardware-related bugs could be

more difficult. When attempting to fix issue #7746 [26] of PX4, the

developers said that:

łHowever, for doing so I think I need to know more about FW and VTOL.

Can you elaborate a bit more about vtol and landdetector? When is a vtol

using MC and when FW? Why do we need to check for rotary wing in

the MC landdetector (I thought that if we have a rotary wing, then we

use MC landdector)?ž

From the above comment, it can be inferred that the developer

was confused about what strategies to take when fixing bugs for

different drone models. In the future, it is highly desirable to design

tools to give developers assistance to help them fix UAV-specific

bugs more effectively.

4.3.2 Challenge 5: Fault Localization. Whether a bug is NA or NB,

developers could spend a lot of time on fault localization. NB bugs

have multiple fixing patches, which usually means multiple mod-

ules are involved. NA bugs contain many hardware-related bugs

(e.g., 22/25 in PX4). All these have brought challenges to UAV fault

localization, which is a critical step for debugging [35, 38, 56, 60].

A typical way to localize a fault in a program is to examine the pro-

gram output at several program locations and compare the output

values with the expected ones. However, as discussed earlier, in a

UAV system, it is difficult for developers to predict the expected

value/state at a certain program location. Although the expected

values/states can be given by experts, it could still be difficult for

developers to judge the correctness of UAV behavior due to non-

determinism.

To understand how to overcome the challenge, we further an-

alyzed 35 PX4 bugs, for which we can identify the developers’

strategies of localizing faults by reading the bug reports. Interest-

ingly, we observed four strategies that the developers often use

to localize bugs, as summarized in Table 3. In the following, we

discuss each of these strategies in detail.

4These hardware-related bugs include parameter bugs, limit bugs, priority bugs, ini-
tialization bugs, correction bugs, and inconsistency bugs.

Table 3: Identified FL Strategies from PX4 UAV-specific Bugs

FL Strategy Number of Bugs Percentage

Flight Log 21 32.3%

Changing Parameters 9 13.8%

Bug Reproducing 3 4.6%

Changing Code 2 3.1%

Unknown 30 46.2%

Figure 5: Sequence of Events from Issue #8186 [27].

Strategy 1: Referring to the Data in Multiple Flight Logs.

A flight log often includes many details of the UAV system’s run-

time behavior. By inspecting multiple logs, developers can usually

pinpoint the bug location more accurately. In issue #8186 [27] of

PX4, the developer described a “priorityž bug. The drone crashed

after the sequence of events, as shown in Fig. 5. As we know, know-

ing the sequence of events that triggers a bug in an event-driven

program can effectively help locate the faults. However, knowing

the event sequence is not enough for fault localization in a UAV

system. This is because unlike the clearly-defined events (e.g., click-

ing a button) in event-driven programs, UAV system events are

usually vaguely described by developers or users. The description

is often not detailed enough, making it difficult to locate the buggy

modules and pinpoint the potential faults. In this case of issue

#8186, the developer located the bug by examining the log of the

inertial measurement unit (IMU) and the selected sensor. Through

the abnormal timeout of the IMU and sensor, the developer located

the fault at a system module (i.e., sensors), which can handle the

sensor’s timeout.

Strategy 2: Changing Parameters. In PX4 issue #5110 [18],

the drone drifted when estimating attitude, and the reporter said:

łI’ve already tried changing parameters in Attitude Q estimator via

QGroundControl but these changes don’t seem to affect it.ž

As the comment indicates, a drone user or developer may change

some related parameters (like the parameters in Attitude Q esti-

mator in this case) to test the drone behavior and localize faulty

modules, when the drone exhibits unexpected behavior. In the

above case, although the system behavior was not influenced by

the changes, changing parameters still guided the developer to

locate the bugs, as shown in the Fig. 6.

Strategy 3: Bug Reproducing. Bug reproducing is a widely-

used method to help locate faults in many software systems, but it is

not observed in our studied UAV projects. In PX4, only three of the

35 bugs were located using bug reproducing. In issue #6669 [22] of

PX4, the reporter reproduced the bug in the simulator, and all critical

UAV runtime events are given to guide the fault localization. With
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Figure 6: The Conversation Between the Bug Reporter and

the Developer in PX4 Issue #5110 [18].

the detailed bug report and the information obtained by reproducing

the bug, the developers located and fixed the bug quickly. Although

reproducing bugs can provide valuable information to help locate

and fix the bugs, we found that, similar to many other projects, the

data provided in many UAV bug reports are often very limited. To

facilitate fault localization, UAV project maintainers may define

standards to guide bug reporting (i.e., what information should be

included).

Strategy 4: Changing Code.As UAV developers and users may

not be professionals, when they localize faults, they may simply

rely on code changing rather than using sophisticated techniques

or tools. In PX4 issue 6651 [21], the UAV’s takeoff could not be

detected in altitude mode. The bug reporter tried to locate the fault

by uncommenting some code lines to observe the UAV’s behavior.

5 SUGGESTIONS FOR PRACTITIONERS

Based on our empirical analysis, we provide the following six sug-

gestions for UAV practitioners.

• Developers should pay attention to the output from the controller

or the underlying hardware. These outputs typically should be

constrained within a reasonable range. For example, no matter

what velocity or thrust computation has been performed, the

output needs to fall within in a correct value range.

• Developers should also pay attention to the correction of sensor

data. Although data correction may only slightly adjust certain

values, it may significantly affect the dependability of the sys-

tem. For example, temperature-sensitive sensors, GPS sensors,

magnetic sensors, and pressure sensors are all strongly related

to flight control. A small error in collecting and processing data

from these sensors can cause serious consequences.

• Changing the values or properties of global parameters should be

done very carefully. Even if the parameters cause bugs, it may not

be desirable to directly changing the parameters. For example,

if the range of a parameter t is from 0 to 100, and a bug can be

fixed by allowing t to take a value beyond 100, it is preferred

to fix this bug with new variables, like a_max = t_max + 100,

instead of directly changing the range of t, which may cause

problems when other parts of the system also use t.

• Developers should pay special attention to the initialization of

hardware. Proper initialization of the underlying hardware could

make a UAV system more stable.

• As mentioned in Section 4.3.2, flight logs can be very useful

for fault localization. UAV users may include critical log data

when reporting bugs to facilitate bug diagnosis. Nonetheless, it

requires sufficient expertise and debugging experience to ensure

the accuracy of fault localization via log analysis. In the future, it

is desirable to design useful tools to help developers effectively

analyze flight logs.

• Developers should be careful when using functions in a UAV

system that supports multiple hardware models. For example, in

PX4, most of the functions applicable to multi-rotor and VTOL

do not support the plane model since the plane’s flight style is

very different from that of multi-rotor and VTOL.

6 THREATS TO VALIDITY

The validity of our study results may be subject to several threats.

Project Selection. First, Our empirical study only involved two

open-source UAV projects. The collected bugs may not be represen-

tative and comprehensive. Hence, our findings may not be general-

izable. In fact, we tried to find more projects, but most other UAV

systems are either closed-source or do not have enough bug data

for our analysis. We found that there are only five well-known and

large open-source UAV systems on GitHub, and the two projects

studied in our paper are the most active ones with a total of 8,560

closed issues. To mitigate the threat, we collected and thoroughly

analyzed 168 UAV-specific bugs in the two projects. Future studies

may investigate more projects to further understand the character-

istics of UAV software bugs.

Bug Selection. Second, similar to the previous studies (e.g., [9]),

we only collected the issues with the “bugž label from the two

project for our research. While the developers and maintainers of

the two projects have good labeling habits, it is still possible for

us to miss some real bugs that do not have the “bugž label. In our

future extension of this work, we will consider studying issues with

other labels or no labels.

Manual Analysis of Bugs. In our work, all bugs are analyzed

manually and it is inevitable that we could bring subjective judg-

ment into the process. To reduce the threat, we had a lot of discus-

sions when analyzing and classifying bugs, and we also tried to

find references from the comments in bug reports to help build our

taxonomy. It took two experienced UAV developers and two other

co-authors six months to analyze and cross-validate the results. Our

results are also online for public scrutiny.

7 RELATED WORK

Empirical Studies of CPSs and Robotics Software. Zheng et

al. [62] conducted an empirical study of CPSs consisting of three

parts: a literature review, an online survey, and interviews. They

reviewed an empirical study of CPS developers and used the find-

ings to highlight the key challenges in verification and validation in

CPSs and presented a research roadmap to address these challenges.

Unlike this study, we focus on the real-world bugs in CPSs.

Joshua et al. [13] conducted a comprehensive study of bugs in

self-driving cars. They introduced 13 root causes, 20 bug symptoms,

and 18 categories of software components that are often affected

by those bugs. They distilled 16 findings from their study to guide

future research. Yang et al. [59] summarized the state-of-the-art
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research results and identified the challenges of developing depend-

able CPSs. There are three challenges: context management, fault

detection, and uncertainty handling. They found that the physical

environment could strongly affect the dependability of a CPS. Dif-

ferent from these two studies, our study summarizes the different

types UAV system bugs and the challenges in detecting and fixing

these bugs.

Neshenko et al. [42] provided a comprehensive classification

of recent surveys on IoT vulnerabilities and they also provided a

unique taxonomy, including the features of IoT vulnerabilities, their

attack vectors, impacts, and corresponding remediation method-

ologies. In their paper, they analyzed the flaws of IoT from the

perspective of attack and defense. In comparison, our bug analysis

is not restricted to the security perspective.

For robotics software, Anders et al. [11] characterized the de-

pendency bugs in ROS and studied the pervasiveness and potential

solutions of these bugs. Michel et al. [2] studied the energy-related

practices in robotics software. Sotiropoulos et al. [51] studied the

probability of immersing software in virtual scenarios to conduct

simulation-based testing, and found that most of the robot naviga-

tion bugs can be found even in low-fidelity simulation. Our study

shows that although there exist development challenges that are

common to UAV and robotics software, developing UAV software

may encounter multiple specific problems due to its unique features,

e.g., hidden data dependence between different hardware.

Testing and Detecting UAV Bugs. Lucio et al. [48] proposed a

UAV test platform by employing Matlab/Simulink to run the drones

under test. Their paper mainly focuses on the control system, not

software bugs. Claudio et al. [41] proposed an automated approach

to generating an online test oracle for CPSs by identifying signal

first-order logic (SFOL) fragments to specify requirements, defining

the quantitative semantics of the fragment, and correctly convert-

ing the fragment into Simulink. Uttam et al. [1] presented a test bed

for a cyber-physical power system. The test bed is built for hard-

ware in loop simulation and system attacks, in order to generate

data sets required by researchers. He et al. [32] proposed a system

identification based oracle for fault localization in control-CPS soft-

ware. They used the AR-SI algorithm to predict a physical trajectory

which can be used as a test oracle for Ardupilot. The results show

that the generated oracle increases the accuracy of CPS software

fault localization. Kane et al. [36] proposed monitor based oracles

for CPS testing and used an external runtime monitor as partial

test oracles to detect unexpected CPS behavior. Giannakopoulo

et al. [15] implemented a test case generation tool for autopilots.

Symbolic execution has been used to generate both user inputs and

test oracles. Our study is different from the aforementioned studies

in that it is the first empirical study of real UAV-specific bugs by

analyzing bugs that have been fixed in GitHub projects.

8 CONCLUSION

In this work, we conducted a large-scale empirical study to charac-

terize UAV-specific bugs in two open-source UAV platforms, namely

PX4 and Ardupilot. We identified 168 UAV-specific bugs from 569

real bugs in the two projects on GitHub. By analyzing these bugs,

we proposed a taxonomy of UAV-specific bugs and summarized

five challenges for detecting and fixing bugs in UAV systems. We

believe this study can facilitate the development of UAV systems

and guide future research in related areas. In the future, we plan to

leverage our empirical findings to develop program analysis tools

for detecting and fixing bugs in UAV systems.
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