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Abstract—Linux operating system is a complex system that is
prone to suffer failures during usage, and increases difficulties
of fixing bugs. Different testing strategies and fault mitigation
methods can be developed and applied based on different types
of bugs, which leads to the necessity to have a deep understanding
of the nature of bugs in Linux. In this paper, an empirical study is
carried out on 5741 bug reports of Linux kernel from an evolution
perspective. A bug classification is conducted based on fault
triggering conditions, followed by the analysis of the evolution
of bug type proportions over versions and time, together with
their comparisons across versions, products and regression bugs.
Moreover, the relationship between bug type proportions and
clustering coefficient, as well as the relation between bug types
and time to fix are presented. This paper reveals 13 interesting
findings based on the empirical results and further provides
guidance for developers and users based on these findings.

Index Terms—bug classification; fault trigger; Linux; evolu-
tion; Mandelbug; regression bug;

I. INTRODUCTION

The dependence on services provided by software systems

keeps increasing. Consequently, failures in software systems

have a large impact on our daily life. As a result, it is crucial

to ensure the reliability of these software systems. Since an

operating system is a special software system which interacts

with hardware devices and provides operating environments

to the software executing on a computer, its reliability has

a direct influence on the reliability of the running software

systems and the services they provide.

Obviously, it is not cost-effective to ensure high reliability of

an operating system through exhaustive testing. Thus, failures

will inevitably manifest after the system is deployed. However,

these failures should be resolved as soon as possible to reduce

service outage time. It can be expected that understanding the

original source of faulty code and the factors that trigger faults

and/or propagate errors, could provide valuable insights into

software development and maintenance phases [1]. Therefore,

it is necessary to explore bug data of an operating system.

Among various operating systems, Linux operating system

is typical and well deployed in most fields of the society.

With the development of Linux, an enormous amount of bug

data has been accumulated and can be obtained publicly for

analysis. Previous studies have concentrated on Linux bug

data from several aspects, such as, patch analysis [2], [3],

bug characteristics analysis [4], bug reworking analysis [5],

‡Corresponding author: Z. Zheng (Email: zhengz@buaa.edu.cn).

predicting time to fix [6], etc. One interesting research topic

is bug type classification and its characteristic analysis [7], [8],

[9].

Previous researchers have classified bugs according to the

failure manifestation perspective, such as hard and soft faults

[10]. For comprehensively investigating fault triggers, which

refer to the set of conditions that activate a fault and propagate

the resulting error(s) into a failure, Grottke and Trivedi [11],

[12] proposed the terminology Mandelbug (MAN) as the

complementary antonym of Bohrbug (BOH). Unlike Bohrbug,

that is a bug which can be easily isolated and reproduced,

the activation and/or error propagation of a Mandelbug are

complex. Moreover, Mandelbugs have two subtypes: non-

aging related Mandelbug (NAM) and aging related bug (ARB).

Aging related bugs are a type of bugs that can cause an

increasing failure rate and/or degraded performance, known

as software aging [13]. According to the above classification,

researchers in [8] extended a more detailed bug type classi-

fication based on the different kinds of complexity in fault

triggering conditions and analyzed bugs in four large open-

source software systems including Linux, MySQL, HTTPD

and AXIS.

Our study is performed with 5741 bug reports of Linux

kernel. This represents a significant extension of the work

in [8], whose data set of Linux kernel was 346 bug reports,

focusing on four products/components and version 2.6 series.

Moreover, a further study of bug type proportions from an

evolution perspective involving versions, products, regressions

and software metric aspects, and so forth, is performed. For

each report, we examine the bug description, comments, as

well as attached files carefully. In this study, we investigate

the following four research questions.

RQ1: How do proportions of bug types in Linux evolve
over versions or time?

Linux has put out more than 1300 releases ranging from

versions 1.0 to 4.1 over the past 20 years [14]. What the

bug type proportions in Linux are and how they evolve over

versions or time, is to be explored.

RQ2: How does the proportion of regression bugs in
Linux evolve over versions or time?

With the evolution of Linux, maintaining becomes increas-

ingly difficult [15], and several problems would be occurred,

such as regressions. A Linux regression is a bug that exists in

some versions of Linux and did not exist in a previous version
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TABLE I
SUMMARY OF FINDINGS OF BUG TYPES ANALYSIS IN LINUX.

Findings on bug types
#1 Among actual bugs, 55.82% are BOHs and 36.34% are MANs.

#2 For NAMs, the major subtypes are TIM (37.23%), ENV (36.51%) and LAG (19.12%).

#3 For ARBs, more than two thirds (68.78%) are related to MEM.

#4 The proportion of BOHs tends to slowly increase with the evolution of versions or time, while the proportion of NAMs tends to slowly

decrease. For ARBs, its proportion tends to slightly decrease over time. For all three types, the proportions stabilize around a constant

value after 4000 days.

#5 The proportions of bug types and their evolution trends are different across versions. For all selected versions, the proportions of BOHs

and MANs tend to stabilize around a constant value after 600 days.

#6 The number of bugs in products related to Drivers (Drivers and ACPI) accounts for 51.57% of all classified bugs.

#7 In products, a bug belonging to Drivers, ACPI or Platform is more likely a BOH; a bug occurring in File System, IO/Storage or Core (

Memory, Process Management and Timers) is more likely an NAM or ARB; a Networking bug is more possible an NAM.

#8 Evolution trends of bug type proportions are different in products. The proportions of NAMs in products File System, IO/Storage and

Core (Memory, Process Management and Timers) tend to slightly increase with time. The proportions of BOHs tend to slowly increase

with time in all products. For ARBs, the proportions tend to stabilize around a constant value after about 3000 days.

Findings on regression bugs
#9 More than half of the classified bugs are regression bugs.

#10 The proportion of BOHs in regression bugs is higher than that in non-regression bugs. Moreover, a regression bug is more likely a BOH,

while a non-regression bug is more possible an NAM or ARB.

#11 The proportion of regression bugs tends to grow with the evolution of versions or time, and it stabilizes around a constant value 0.5

after 3500 days.

Findings on software metrics
#12 With the evolution of clustering coefficient, Linux with a large clustering coefficient tends to have a low proportion of BOHs. In contrast,

Linux with a large clustering coefficient tends to possess a high proportion of MANs.

Findings on time to fix
#13 The average time taken to fix a MAN tends to be longer than that for fixing a BOH.

[16]. What the proportion of regression bugs in Linux is, and

how it evolves over versions or time, as well as how it impacts

the evolution of bug type proportions, will be answered in this

research question. To the best of our knowledge, it is the first

paper exploring the proportion of regression bugs in Linux.

RQ3: Is there a software metric that can reflect the
evolution of bug type proportions?

What the relationship between bug type proportions and

software metrics is, will be investigated in this research

question.

RQ4: What’s the relationship between bug types and
time to fix?

In this research question, we examine the relationship

between bug types and time to fix the bug.

Based on the empirical study on above four RQs, we list a

set of findings summarized in TABLE I and their implications

can be found in relevant parts in the following, which can

provide useful guidance for developers and users.

The rest of the paper is organized as follows. Section

II shows the related work, and Section III describes the

data source, bug types, classification procedure, as well as a

statistical metric used in this paper. In Section IV, results of our

analysis are presented and discussed. Section V presents the

threats to validity, and finally conclusion is given in Section

VI.

II. RELATED WORK

There are many existing papers on defining general charac-

teristics of defects, such as the IEEE Std. 1044 scheme [17],

the Hewlett-Packard (HP) scheme [18] and the Orthogonal

Defect Classification (ODC) [19]. ODC classifies defects

through several attributes, in which the most important one

is the defect type that captures the semantic of the fix made

by the programmer, and the defect trigger. Meanwhile, ODC

triggers are directly related to bug surfacing activities.

The classification method used in this paper is based on the

bug manifestation dimension, or in other words, is based on

the reproducibility of a bug. In 1985, Gray [10] introduced

a systematic abstract about the reproducibility of a bug. He

used solid or hard faults to refer to the easily reproducible

failures (named Bohrbugs) and elusive or soft faults refer to the

transient reproducible failures (named Heisenbugs). Grottke

and Trivedi [11], [12] proposed a more general terminology of

Mandelbugs: that are those bugs whose activation/propagation

appears as non-deterministic and are complex, as the com-

plementary antonym of Bohrbugs. It should be noted that,

Mandelbugs are more general classification than Heisenbugs

which is a subset of Mandelbugs. The definitions of Bohrbug

and Mandelbug are as follows:

• Bohrbug: a kind of bug whose activation and error

propagation are simple, thus it can be easily reproduced
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and isolated, and its manifestation is consistent.

• Mandelbug: a kind of bug whose activation and error

propagation are complex, thus it is hard to reproduce and

its manifestation is transient, due to the possibility of the

direct factor that a time lag between the fault activation

and the failure occurrence, or the possible influence of

indirect factor, such as system-internal environment, the

timing of inputs and operations, and the sequencing of

inputs and operations.

Moreover, Mandelbugs can be divided into aging related

bugs and non-aging related Mandelbugs. Aging related bugs

are a type of bugs that can lead to an increasing failure rate

and/or degraded performance, causing software to appear to be

aging [12]. The failure manifestation of an aging related bug

is an accumulative process, related to memory management,

storage, numerical errors, etc. [20]. The remaining Mandelbugs

are defined as non-aging related Mandelbugs that do not cause

software aging. In 2013, researchers in [8] proposed a more

detailed subtype classification for non-aging related Mandel-

bugs and aging related bugs, based on the different kinds of

complexity in fault triggering conditions. This provides more

accurate information about bug types.

By adopting the above classification method, several re-

searches have concentrated on bug reports classification and

related analysis of different software systems. Grottke et al.

[21] investigated the faults discovered in the on-board software

for 18 JPL/NASA space missions. In their paper, among

520 software faults detected in all 18 missions, 61.4% were

Bohrbugs and 36.5% were Mandelbugs. Researchers in [8]

examined bugs in four large open-source software systems.

They found that the proportion of Mandelbugs significantly

varies among systems, i.e., the proportions of Mandelbugs

for Linux, MySQL, HTTPD and AXIS are 50.2%, 38%,

17.5% and 7.5%, respectively. Moreover, Qin et al. [22]

conducted a bug classification on Android operating system

by exploring 513 bug reports and found that 31.4% of bugs

in Android are Mandelbugs. Chandra et al. [23] examined the

faults that occur in Apache web server, the GNOME desktop

environment, and the MySQL database and found that 5–

14% of the faults were triggered by transient conditions, such

as timing and synchronization, that naturally fix themselves

during recovery. Researchers in [24] investigated the charac-

teristics of the bug manifestation process through defining a

set of failure-exposing conditions, such as workload- and state-

dependent triggers, user- and environment-dependent triggers.

In addition, several studies focus on specific bugs, such as

concurrency bugs [25], ARBs [26].

Another research needed to be discussed is regression bugs.

A regression bug is a bug that causing a normal feature to

stop working after a certain event (e.g., bug fixes, new feature

work, etc.). One research paper concluded that regression bugs

are very often caused by encompassed bug fixes included in

patches [27]. Shihab et al. [28] conducted an industrial study

on the risk of software changes and found that the number

of bug reports and the developer experience are the best

Fig. 1. Bug report collection and aggregation procedure. Step 1: report
filtering; step 2: report extracting; step 3: version integrating.

indicators of change risk. Khattar et al. [29] first performed an

in-depth characterization study of regression bugs on Google

Chromium project and they found that 51.09% of bugs in

Google Chromium are regression bugs.

In this paper, we perform an empirical study on Linux. The

main advantages of our paper over existing ones include:

(1) A significant extensive data set. The total number of bug

reports we analyzed is 5741, which is significantly larger than

that of a previous study [8], not only extending the number of

bugs, but also the numbers of products and versions.

(2) An evolution perspective is used to analyze bug type

proportions in Linux, including evolution with versions and

time. Furthermore, bug type proportions in different versions

and products are also examined.

(3) Regression bugs in Linux and their bug types, as well

as evolutions are examined. To the best of our knowledge, it

is the first paper exploring the proportion of regression bugs

in Linux.

(4) The relationship between bug type proportions and

clustering coefficient is presented.

(5) The relationship between bug types and time to fix the

bug is presented.

III. APPROACH

A. Data Collection and Aggregation

The bug data is collected from Linux kernel’s official bug

reporting website1. Fig. 1 depicts the data collection and

aggregation procedure. Each step is described in detail in the

following.

• Step 1: report filtering. Reports in Linux kernel Bugzilla

were initially filtered based on conditions of “Status:

CLOSED” and “Resolution: CODE FIX”.

• Step 2: report extracting. After filtering, the list of target

reports was got and then each report was extracted to the

local computer by a web crawler that we designed.

• Step 3: version integrating. The recorded versions are

needed to be processed, due to the following two reasons.

First, since some users used distribution versions that are

based on Linux kernel, but they also reported problems in

Linux kernel Bugzilla (e.g., recorded versions “Linux ver-

sion 2.6.17 (Ubuntu 2.6.17-10.34-generic)”, “2.6.15-rc4-

686 (Debians -0experimental.1 build)”, “2.6.12-gentoo-

r6”, etc.). Besides, some users compiled the latest source

codes from Git (e.g., recorded versions “2.6.29-rc3-

git20070311”, “2.4.24rc3-git3”, “2.6.25-rc1-git1”, etc.),

1https://bugzilla.kernel.org/.
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TABLE II
DETAILS OF DATA SET.

Versions Products Reports Time frame

2.4-4.9 All 5741 Nov 2002 - Nov 2016

but not the formal release versions. According to the

version numbering method of Linux kernel [14], [15],

the recorded versions were integrated to major kernel ver-

sions. For instance, recoded version 2.6.11.7 is regarded

as 2.6.11, since version 2.6.11 is a major version whereas

version 2.6.11.7 is a minor version of 2.6.11.

As shown in Table II, the collected data cover the main-

stream tree for Linux ranging from versions 2.4 to 4.9 for all

targeted products and hardware platforms. The total number

of reports is 5741 and data range over a period from Nov 2002

through Nov 2016.

B. Bug Classification Approach

The bug type classification method is adopted from [8].

According to the complexity of fault triggers, a bug is clas-

sified as a Bohrbug (BOH) or a Mandelbug (MAN) [11],

[12]. A Mandelbug can be further classified as a non-aging

related Mandelbug (NAM) or an aging related bug (ARB).

The overview of bug types is shown in Fig. 2, and the subtype

definitions of NAM and ARB are listed below.

The definitions of NAM subtypes:

• LAG: there exists a time lag between the activation of

the bug and the occurrence of its failure;

• ENV: the interactions of the software application with its

system-internal environment have impact on the activa-

tion and/or error propagation;

• TIM: the timing of inputs and operations is the factor

that affects the fault activation and/or error propagation;

• SEQ: the sequencing (i.e., the relative order) of inputs

and operations is the factor that influences the activation

and/or error propagation;

The definitions of ARB subtypes:

• MEM: the root cause of ARBs related to the accumula-

tion of errors as a result of improper memory manage-

ment (e.g., memory leaks, buffers not being flushed);

• STO: the root cause of ARBs related to the accumulation

of errors as a result of improper storage space manage-

ment (e.g., disk space is consumed by the bug);

• LOG: the root cause of ARBs resulting in leaks of other

logical resources (system-dependent data structures e.g.,

inodes or sockets that are not freed after usage);

• NUM: the root cause of ARBs is a result of the accumula-

tion of numerical errors (e.g., integer overflows, round-off

errors);

• TOT: the root cause of ARBs is that the fault activation or

error propagation rate increases with total system runtime,

but it is not induced by accumulation of internal error

states.

Fig. 2. Bug types. Based on the complexity of fault triggers, bugs are
classified as Bohrbugs (BOHs) and Mandelbugs (MANs). Mandelbugs can
further be categorized as non-aging related Mandelbugs (NAMs) and aging
related bugs (ARBs). There are also have subtypes in NAM and ARB.

Fig. 3. Bug report classification procedure. Step 1: data clean; step 2:
extracting fault triggers; step 3: classification.

C. Bug Report Classification Procedure

For a given bug report, there are three step procedure for

the classification, as exhibited in Fig. 3. Each step is described

in the following.

• Step 1: data clean. The bug report should first be ex-

amined to make sure that it was a bug, i.e., a request

for new features or for enhancements, a documentation

issue (e.g., missing, outdated documentation, or harmless

warning output), compile-time issues (e.g., make errors

or linking errors), operator errors and duplicates were

removed from the analysis.

• Step 2: extracting fault triggers. The descriptions, discus-

sion comments, patches, log files and other attached files

of the bug report were carefully examined, to find out:
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1) the activation conditions, e.g., the set of events and/or

inputs needed to trigger errors; 2) the error propagation,

e.g., what parameter or state of the program was changed

by the bug and how a changed parameter or state prop-

agated; 3) the manifestation of the failure, e.g., what the

phenomenon would the users see when failure occurred.

• Step 3: classification. According to the extracted fault

triggers and the failure manifestation phenomenon, as

well as the characteristics of each subtype of ARB and

NAM, we successively checked whether the bug belong

to ARB, NAM or BOH, respectively. Note that, if a bug

was classified as an ARB, but there was not enough

information to extract failure mechanics, we labeled it as

ARU. Similarly, NAU is labeled for the bug categorized

as an NAM but lack of information to decide its activation

and error propagation conditions. In the end, a report was

labeled as an unknown type (UNK) if it did not have

sufficient details to classify as ARB, NAM, or BOH.

The classification is manually implemented by the authors

and when encounter suspicious classified cases, cross-checks

are taken. To clarify the classification, some examples with

their partial descriptions, are shown in Table III. Furthermore,

our data is released to our research website2, enabling other

researchers to understand and implement the classification

more easily. Among the 5741 bug reports, 4378 reports are

identified as actual bugs, which account for 76.26%.

D. Correlation of Bug Types and Report Attributes

For investigating the correlation between bug types and

report attributes, a statistical metric called lift is implemented

[30]. The lift of category ai and category bj is calculated as

P (aibj)/(P (ai) ∗ P (bj)), where P (aibj) is the probability

that a bug belongs to both category ai and bj . If lift(ai, bj)
is greater than 1, categories ai and bj are positively correlated,

which means that if a bug belongs to ai, it is more likely to

also belong to bj . Symmetrically, if lift(ai, bj) is less than 1,

i.e., if a bug belongs to ai, it is less likely to also belongs to

bj . In addition, if lift(ai, bj) is equal to 1, it means the two

categories ai and bj are not correlated.

For instance, if the total number of bugs are 100, 30 of

which belong to product Drivers, 20 of which are BOHs,

and 10 of which are Drivers bugs that also are BOHs, the

correlation lift between Drivers bugs and BOHs is calculated

as follows. P (aibj), where ai is Drivers bugs and bj is

BOHs, is 10/100. P (ai) is 30/100, and P (bj) is 20/100.

The correlation lift(ai, bj) = P (aibj)/(P (ai) ∗ P (bj)) =
(10/100)/((30/100) ∗ (20/100)) = 1.67, which means that a

bug belonging to product Drivers is more likely a BOH.

IV. ANALYSIS

This section reports the results of analyzing of bug reports

in terms of findings and their implications. The results are the

answers of the four RQs illustrated in Introduction.

2http://zhengzheng.buaa.edu.cn/en/pdf/linux.xlsx

TABLE III
SOME EXAMPLES OF CLASSIFIED BUGS.

ID Type Description

6045 NAM/TIM “Using the aic94xx/sas class driver...,intermittent

panic/hang on boot.. due to a race condition

between device discovery of the root disk and an

attempt to mount the root file system”

7968 BOH “After booting (and during booting) the keyboard

LEDs (NumLock, CapsLock and ScrollLock)

don’t work (they’re always off).”

11805 NAM/ENV “mounting XFS produces a segfault...When there is

no memory left in the system, xfs buf get noaddr()

can fail.”

12684 NAM/LAG “After a suspend/resume, and a second suspend, the

machine refuses to resume... this could be rectified

by forcibly saving and restoring the ACPI non-

volatile state”

50181 ARB/MEM “After 20 hours of uptime, memory usage starts

going up...”

A. Evolution of Bug Type Proportions

1) Overview of Bug Type Proportions: Fig. 4 (a) exhibits

the total numbers and percentages of each bug type: BOH,

NAM, ARB, as well as UNK. Note that, BOHs, NAMs and

ARBs are classified bugs, which account for 92.16% of all

actual bugs.

Finding #1: Among actual bugs, 55.82% are BOHs and
36.34% are MANs.

It can be observed from Fig. 4 (a) that, more than half

of bugs in Linux are BOHs. Although BOHs are easy to

reproduce and to debug once detected, there still possesses

a huge proportion in Linux bugs. This might be attributed

to the difficulty in testing a large operating system. Besides,

the continuous development of Linux might lead to a high

proportion of BOHs.

The share of MANs (NAMs and ARBs) is 36.34%, which

constitutes a non-negligible part. The percentage of MANs is

close to other software systems, such as 38% in MySQL [8],

36.5% in space mission on-board software [21] and 31.4% in

Android [22]. Due to the complex fault triggers of MANs,

specific testing method should be developed.

Implications: For BOHs, sufficient testing should occur
before releasing, such as LTP (Linux Testing Project) [31].
For MANs, as a non-negligible fraction exists, specific testing
methods (e.g., combinatorial testing [32]) and cost-effective
fault tolerance techniques (e.g., environment diversity [33]),
should be developed to handle them.

As shown in Fig. 4 (a), the proportions of NAMs and ARBs

are 31.66%, 4.68%, respectively. In the following, we further

examine the proportions of each subtype in NAMs and ARBs

in detail.

Finding #2: For NAMs, the major subtypes are TIM
(37.23%), ENV (36.51%) and LAG (19.12%).

It can be observed from Fig. 4 (b) that, the major sub-

types in NAMs are TIM, ENV and LAG, which is well
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Fig. 4. Bug type proportions. (a) Total numbers and percentages for each
bug type among the 4378 actual bugs. (b) Numbers and proportions of NAM
subtypes. (c) Numbers and proportions of ARB subtypes.

in accordance with the results of a previous study [8]. The

high proportions of TIM and ENV are understandable as

the Linux kernel inherently must concur concurrent activi-

ties and access shared resources (e.g., race condition: “ID-

13738: Soft-Lockup/Race in networking in 2.6.31-rc1+195”,

deadlock: “ID-11824: raw1394: possible deadlock if accessed

by multithreaded app”), as well as hardware management (e.g.,

“ID-8968: One broken USB storage device can hang the entire

USB subsystem”). As for LAG, the root causes are often

due to data corruption problems or state incorrect changing,

but failures manifest only after these errors have propagated

through the system. In subtype LAG, the common error is

null pointer dereference (e.g., “ID-10048: ipv4/fib hash.c: fix

NULL dereference”).

Implications: To mitigate the impact of NAMs on Linux,
debugging, testing or fault tolerance should focus on subtypes
TIM, ENV and LAG. For testing TIM, threads conflict or
locking mechanisms should be paid more attention. For testing
ENV, the interaction with hardware should be focused on. For
testing LAG, the values of data variables or state variables,
especially those that are passed in modules or subsystems,
should be examined carefully.

Finding #3: For ARBs, more than two thirds (68.78%) are
related to MEM.

Fig. 4 (c) displays numbers and proportions of ARB sub-

types. It can be seen that, the major subtype in ARBs is

MEM, which is well in accordance with the results of previous

studies [8], [21], [22], [34]. As known, Linux is written in

C language, in which memory management is handled by

developers, which makes it more prone to software aging.

Besides, leaks associated with storage, numerical problems,

as well as other logical resources were also found.

Implications: Resource release in Linux should be paid
special attention by developers. For MEM, some dynamic
memory bug detection tools (e.g., Kmemleak[35], a kernel
memory leak detector.) and static code analysis tools (e.g.,

Fig. 5. Evolution of bug type proportions among classified bug reports. (a)
Evolve over versions. Note, SN represents the sequential number which is
assigned to each version according to their release data, e.g., the sequence
number of version 2.6.15 is 1 and that for version 3.0 is 26. The symbol will
be used in the remaining parts of the paper. (b) Evolve over time.

Cppcheck [36]) are suitable for memory leaks debugging.
2) Evolution of Bug Type Proportions: According to the

version integrating previously described in Section III A, the

distributions of classified bugs in versions 2.4 to 4.9 are

counted. To ensure the result validity, we choose versions

(i.e., versions 2.6.15 to 3.0) that have more than 50 bugs to

analyze the evolution of bug type proportions over versions, as

shown in Fig. 5 (a). Moreover, we analyze the evolution of bug

type proportions with reported time. Due to the overlapping

life cycle of two major version series (e.g., version 3.7 series

was maintained from Dec 2012 to Mar 2013, while version

3.8 series was maintained from Feb 2013 to May 2013.), we

consider all versions in the temporal analysis in the following,

as exhibited in Fig. 5 (b).

Finding #4: The proportion of BOHs tends to slowly
increase with the evolution of versions or time, while the
proportion of NAMs tends to slowly decrease. For ARBs, its
proportion tends to slightly decrease over time. For all three
types, the proportions stabilize around a constant value after
4000 days.

The evolution trends of the proportions for BOHs, NAMs

and ARBs in Fig. 5 (a), are tested by means of Mann-Kendall

trend test [37], [38] and the results indicate that the evolution

trends of proportions for BOHs and NAMs are significant at

the 5% (α = 0.05) level, but for ARBs is insignificant.

About every two months, a major version of Linux would be

released (e.g., version 4.1 was released on Jun 22, 2015, while

version 4.2 was put out on Aug 30, 2015). With the evolution

of Linux, the complexity keeps continuously growing (i.e.,

the number of functions [14], and the lines of code [15],

continuously grow with the development of Linux), which

is results of a massive number of features being introduced.

This might lead to more BOHs in newly released versions.

Although code changes would also introduce NAMs, the slow

decreasing proportion of NAMs might be attributed to the fast

growth rate of BOHs proportion. Moreover, the proportion of

ARBs tends to be more stable with the evolution of versions

or time.

Implications: For frequent-release characteristic of Linux
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development paradigm, developers are suggested to pay
greater attention to bugs introduced in new features, and a
continuous functional testing activity is required.

3) Comparison of Evolutions of Bug Type Proportions
Across Four Versions: In this part, four versions including

versions 2.6.0, 2.6.24, 2.6.27 and 2.6.32, that possess the most

bugs in all versions, are chosen to examine the evolution of bug

type proportions over the life time of a version, as displayed

in Fig. 6.

Finding #5: The proportions of bug types and their evo-
lution trends are different across versions. For all selected
versions, the proportions of BOHs and MANs tend to stabilize
around a constant value after 600 days.

As depicted in Fig. 6 (a), the proportion of MANs is

greater than BOHs in version 2.6.0, the first version of 2.6

series. This might be due to the introducing of a new CPU

scheduler. In previous versions, all runnable tasks were kept

on a single run-queue that represented a linked list of threads.

However, in version 2.6.0, the single run-queue lock was

replaced with a per CPU lock, which means that the kernel is

preemptive: it can immediate response to interactive processes

[39]. This feature might cause more NAMs, especially more

timing-related bugs (e.g., race conditions and deadlocks), since

developers need time to adapt to the new scheduler.

Moreover, it can be observed from Fig. 6 (c) that in version

2.6.27, the proportion of MANs tends to increase after 750

days. This might be attributed to the reason that version 2.6.27

is one of long-term support versions. They are a type of

special versions which are supported for a very long period.

Long-term support version could become more stable during

the maintenance, thus the proportion of easily isolated and

reproduced bugs (i.e., BOHs) would decrease, while difficult

to fix bugs (i.e., MANs) would increase.

Implications: The evolution trends of bug type proportions
can be utilized as indicators to decide which testing strategies
should be implemented for each version.

Fig. 6. Evolution of bug type proportions of four selected versions, including
(a) 2.6.0, (b) 2.6.24, (c) 2.6.27 and (d) 2.6.32.

Fig. 7. Distributions of classified bugs in products. FS denotes File system,
Plat stands for Platform Specific/Hardware, Core includes bugs in 3 products:
Memory Management, Process Management and Timers.

4) Evolution of Bug Type Proportions in Products: To

understand the impact of different products on bug types, we

analyze proportion distributions of bug types and temporal

evolution in products. In Linux kernel Bugzilla, bugs are

categorized into products (e.g., Drivers, File System, Mem-

ory Management, Process Management, etc.), which refer

to different specific functions of Linux. Fig. 7 depicts the

distributions of classified bugs in the selected products that

possessing the most number of bugs. Note, the numbers

of BOHs, NAMs and ARBs in these products account for

89.32%, 87.37% and 88.78%, of the total numbers of BOHs,

NAMs and ARBs, respectively.

Finding #6: The number of bugs in products related to
Drivers (Drivers and ACPI) accounts for 51.57% of all
classified bugs.

Linux supports a large number of devices, e.g., more than

100 types of devices in version 4.1 are supported and the

number of functions in their source codes of drivers account

for around 50% of the total functions of Linux [14]. In

addition, product ACPI is short for advanced configuration and

power interface, which is closely related to hardware devices.

Due to a great diversity of device support, it is difficult to

perform compatibility testing for all device drivers.

Implications: In Linux testing, more attention should be
paid to Drivers, since more than half of the classified bugs
are related to device drivers.

To further analyze the correlation between bug types and

products, we use a metric named lift (as described in Section

III D) to investigate which bug types would more likely occur

in each product. Table IV shows the correlation between bug

types and products.

Finding #7: In products, a bug belonging to Drivers, ACPI
or Platform is more likely a BOH; a bug occurring in File
System, IO/Storage or Core (Memory, Process Management
and Timers) is more likely an NAM or ARB; a Networking
bug is more possible an NAM.

The different bug type manifestations in products might be

due to different characteristics of products. As for products

Drivers, ACPI and Platform Specific/Hardware, although these

products are regarded as bridges between an operating system
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TABLE IV
CORRELATION BETWEEN BUG TYPES AND PRODUCTS.

BOH NAM ARB

Drivers 1.03 0.98 0.74

ACPI 1.11 0.87 0.53

FS 0.82 1.20 1.90
IO/Storage 0.94 1.69 1.52
Plat 1.12 0.79 0.92

Networking 0.98 1.04 0.99

Core 0.77 1.30 1.79

and devices, failures in these products manifest more directly

to the user site. When users using a device, if its drivers were

not coded correctly, the device would not be functional to

users. Therefore, bugs occurred in these products would be

more likely BOHs.

While for products File System, IO/Storage, Networking

and Core (Memory, Process Management and Timers), these

products are regarded as basic or core functions from an op-

erating system aspect. This means that the interactions among

these products are more complex and tight [40]. Consequently,

bugs related to these products are more prone to be MANs.

Implications: Different testing strategies should be im-
plemented to different products. For instance, for testing
product Drivers, more functional testing and compatibility
testing should be taken. While for testing product File System,
Networking, IO/Storage, etc., combinatorial testing might be
useful [32], since bugs related to these products are more
likely MANs.

In addition, we explore the evolutions of bug type propor-

tions of the selected products in the following, as depicted in

Fig. 8.

Finding #8: Evolution trends of bug type proportions are

Fig. 8. Evolution of bug type proportions of selected products, including (a)
Drivers, (b) ACPI, (c) FS, (d) IO/Storage, (e) Plat, (f) Networking and (g)
Core (Memory, Process Management and Timers).

TABLE V
TWO EXAMPLES OF REGRESSION BUGS AND THEIR BUG TYPES.

ID Type Description

8736 NAM/TIM “Here is another scenario I bumped onto -

qdisc watchdog cancel() and qdisc restart() deadlock

...Please try reverting commit 1936502d0. This one

is a regression in 2.6.22”

11329 BOH “in git1 and previous, cpu0 vid is reported as 1475
(which is correct). Since git2, it is reported, as 725”

different in products. The proportions of NAMs in products File
System, IO/Storage and Core (Memory, Process Management
and Timers) tend to slightly increase with time. The propor-
tions of BOHs tend to slowly increase with time in all products.
For ARBs, the proportions tend to stabilize around a constant
value after about 3000 days.

Implications: refer to implications for Findings #4 and #7.

B. Evolution of Regression bugs

A regression bug in Linux means that a bug causes an

existing feature, which used to work, to fail or misbehave

completely in recent versions [16]. Two examples of regression

bugs and their bug types are exhibited in Table V.

1) Proportions of Bug Types in Regression Bugs: In this

part, we make a statistic of numbers of regression bugs and

non-regression bugs, as exhibited in Fig. 9 (a).

Finding #9: More than half of the classified bugs are
regression bugs.

It can be observed from Fig. 9 (a) that, more than half of

the classified bugs in Linux are the existing feature broken

problems, which means regression bugs. The proportion of

regression bugs (50.06%) in Linux is similar with other

software systems, such as 51.09% in Google Chromium [29].

Furthermore, we perform a comparison of bug type propor-

tions between regression and non-regression bugs, as displayed

in Fig. 9 (b).

Finding #10: The proportion of BOHs in regression bugs is
higher than that in non-regression bugs. Moreover, a regres-
sion bug is more likely a BOH, while a non-regression bug is
more possible an NAM or ARB.

We can observe from Fig. 9 (b), there are more BOHs in

regression bugs, while there are more MANs in non-regression

bugs. To further analyze the correlation between bug types

and regressions, we use a metric named lift (as described

in Section III D) to investigate which bug types would more

likely occur in regression or non-regression categories, as

shown in Table VI. A regression bug is more likely a BOH,

but a non-regression bug is more possible a MAN. This

indicates that code changes (e.g., new feature introducing

and bug fixing) would bring more BOHs rather than MANs.

Regressions are annoying since they make it harder for users

to upgrade the kernel. As a result, users with old kernels would

more likely suffer security problems.

Implications: Developers are suggested to implement more
regression testing before releasing a new version, to reduce
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Fig. 9. Regression and non-regression bugs among classified bug reports.
(a) Numbers and percentages for regression and non-regression bugs. (b)
Comparison of bug types for regression and non-regression bugs.

TABLE VI
CORRELATION BETWEEN BUG TYPES AND REGRESSIONS.

BOH NAM ARB

regression 1.09 0.91 0.58

non-regression 0.91 1.09 2.00

the existing feature broken problems, since a half of bugs
are regression bugs. While dealing with non-regression bugs,
specific testing methods (e.g., combinatorial testing [32])
would be more effective, since a non-regression bug is more
likely a MAN.

2) Evolution of the Proportion of Regression bugs: In the

following, the evolution trends of proportions of regression

bugs and non-regressions are explored. The evolution analysis

over version and time are exhibited in Fig. 10 (a) and (b),

respectively.

Finding #11: The proportion of regression bugs tends to
grow with the evolution of versions or time, and it stabilizes
around a constant value 0.5 after 3500 days.

During the evolution of Linux, several new features are

introduced. According to a previous study of Linux evolution

[14], the numbers of supported types of device drivers, file sys-

tems, networking protocols, architecture platforms in version

2.4 are less than 40, 40, 30 and 15, respectively, but increase

to more than 110, 60, 50 and 25, respectively in version 4.1.

Significant number of features integrating into Linux would

bring a massive number of code changes. Therefore, it would

be inevitable to cause existing feature broken problems. In

addition, bug fixing is also the reason (e.g., “ID-10232: intel

mtrr fixups apparently broke display and e1000 probe” and

“ID-43228: Commit 1cc0c998 (ACPI: Fix D3hot v D3cold

confusion) breaks turning off nvidia optimus card”, etc.). Thus,

the results of Finding #11 are expected and give evidences of

Findings #1 and #4.

Implications: Since regression could bring more BOHs
in Linux, it should be more careful to take code changes
(e.g., feature adding or bug fixing), and continuous regression
testing should be done before releasing a new feature or fixing
a bug [16].

Fig. 10. Evolution of proportions of regression and non-regression bugs
among classified bug reports. (a) Evolve over versions. (b) Evolve over time.

C. Evolution of Bug Type Proportions with Software Metrics

Software systems represent one of the most sophisticated

man-made systems which can be modeled as networks [41],

[42], [43], [44]. In this section, we analyze the relationship

between bug type proportions and a complex network metric

clustering coefficient. Clustering coefficient is used to measure

the tendency of a network to form tightly connected neighbor-

hoods, and its definition can be seen in [14]. To ensure the

result validity, in this part we choose those versions with more

than 50 bugs for analyzing. The relationships between bug type

proportions and clustering coefficient are depicted in Fig. 11

(a) and (b), respectively. Besides, Pearson correlation analysis

is shown in Table VII.

Finding #12: With the evolution of clustering coefficient,
Linux with a large clustering coefficient tends to have a low
proportion of BOHs. In contrast, Linux with a large clustering
coefficient tends to possess a high proportion of MANs.

As depicted in Table VII, correlations are significant at the

0.01 level (note, the sample size n is 32). A strong negative

correlation between the proportion of BOHs and clustering

coefficient is observed. Note that, according to the result of the

evolution of Linux network, clustering coefficient decreases

with the evolution of versions [14]. This means that with the

evolution of clustering coefficient, the proportion of BOHs

tends to become higher. By contrast, the proportion of MANs

tends to be smaller, due to a strong positive correlation with

clustering coefficient, as exhibited in Table VII. This might

be due to the reason that, a large clustering coefficient means

Fig. 11. The relationship between bug type proportions and clustering
coefficient. (a) BOH, (b) MAN.
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TABLE VII
PEARSON CORRELATION ANALYSIS BETWEEN BUG TYPE PROPORTIONS

AND CLUSTERING COEFFICIENT.

Clustering coefficient p value

BOH -0.68 0.000022

MAN 0.68 0.000022

there exists a tight local connection of functions, which could

bring more interactions among internal functions. This could

lead to a more complex failure manifestation (i.e., MANs). In

contrast, a small clustering coefficient refers to a loose local

connection of functions in terms of a less interaction among

them, which might bring a less complex failure manifestation

(i.e., BOHs).

Implications: Clustering coefficient can be utilized as an
indicator to measure the bug type proportions in Linux.

D. The Relationship Between Bug Types and Time to Fix

In this section, we investigate the relationship between bug

types and time to fix the bug.

According to the definitions of BOH and MAN, the fault

triggers of a MAN are more complex than that of a BOH.

Therefore, it is supposed to have longer time to fix a MAN.

Since there is no fixing time recorded in bug reports, we

estimate the fixing time by the difference between the reported

time and the last modified time.

Finding #13: The average time taken to fix a MAN tends
to be longer than that for fixing a BOH.

The average fixing time and standard deviation of two bug

types are shown in Table VIII. It can be notably observed that

the average time taken to fix a BOH is 218.63 days, while

for a MAN is 254.22 days. The result is further to be verified

by means of the Wilcoxon-Mann-Whitney test [45]. The null

hypothesis is that for both types of bugs the fixing time is

sampled from the same distribution. For a given criteria (α =
0.05), after performing the test, we got that the p value is

0.00002, which means that the null hypothesis can be rejected

at 95% of confidence. Therefore, we can draw a conclusion

that it is more likely to take a longer time to fix a MAN than

fix a BOH. This shows a well in accordance with previous

studies in HTTPD [8], AXIS [8], and Android [22].

A bug report from its submission to the final resolution

would go through several states, including Unconfirmed, New,

Assigned, Resolved, Verified and Closed [1]. Once the bug is

assigned to a kernel developer, the state of the bug transits

to the Assigned state. The major difference of fixing time

between BOHs and MANs might be attributed to the difference

of transition time from states Assigned to Resolved. Due to the

complexity difference between MANs and BOHs, to resolve

a MAN, developers usually require sufficient information to

detect the underlying root causes in the code. Besides, the

non-deterministic characteristic of MANs could lead to more

time taken to reproduce. Consequently, longer fixing time is

needed to fix a MAN.

TABLE VIII
COMPARISON OF TIME TO FIX FOR BUG TYPES.

Bug type Average time to fix (days) Standard deviation

BOH 218.63 360.72

MAN 254.22 374.22

Implications: For MANs, specific testing methods and fault
tolerance approaches should be implemented, due to their long
fixing time.

V. THREATS TO VALIDITY

As other empirical studies, our study is naturally subject to

limitations. We identify the following threats:

Selection of bug reports: we only analyze fixed and closed

reports, since unfixed and unclosed reports may contain incom-

plete information. Bug type proportions could be different if

unfixed and unclosed reports are considered.

Manual inspection: although we have examined carefully all

the related information in bug reports, involving descriptions,

comments, as well as attached files and patches, classification

mistakes could not be avoided.

Evolution analysis: for version evolution analysis, although

minor releases were integrated into major releases according

to Linux version numbering method, the results may be

influenced by the accuracy and completeness of reports. While

for temporal evolution analysis, bug reporting of a release

might decrease because of a new major release or fixes taking

longer.

Regression bugs: the determination of regression bugs is not

only according to their tags but also examining descriptions

and comments, but there might still exist some mistakes due

to the accuracy and completeness of reports.

Fixing time: the time to fix a bug is computed as the time

when the report opens until it is closed, but it might exist some

situations that reporters misused the tracking tool.

VI. CONCLUSION

In this paper, we performed an empirical investigation of

bugs on Linux operating system in terms of fault triggers. With

the bug classification results based on 5741 real bug reports,

our analyses were conducted from an evolution perspective on

four research questions: bug types in Linux, regression bugs,

software metrics and time to fix, along with several interesting

findings and implications that can be adopted by developers

and users. Future research on Linux can benefit from our

study. For instance, as to the products of Linux, File System,

IO/Storage, Networking and Core (Memory Management,

Process Management and Timers) should be firstly examined

to reduce non-deterministic behaviors. Besides, the clustering

coefficient could be utilized as an indicator to measure bug

type proportions in Linux.
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