
Coding Pitfalls: Demystifying the Potential API
Compatibility Risk of Variadic Parameters in Python

Shuai Zhang, Gangqiang He, Guanping Xiao∗
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

{shuaizhang, gangqiang.he, gpxiao}@nuaa.edu.cn

Abstract—In Python development, developers often use vari-
adic parameters, i.e., *args and **kwargs, to ensure backward
compatibility of APIs after parameter changes or enhancements.
Variadic parameters enable APIs to accept an arbitrary number
of arguments. However, our preliminary investigation reveals
that when an API with variadic parameters internally passes
these parameters to other APIs that do not support variadic
parameters, it may introduce potential compatibility issues, i.e.,
variadic parameter pitfalls (VPPs). In this work, we explore the
prevalence and impact of VPPs by conducting an empirical study
on 33 popular Python third-party libraries using a prototype tool,
i.e., VPPDETECTOR. We provide recommendations to mitigate
VPPs based on our findings.

Index Terms—Python, variadic parameter pitfalls, API, com-
patibility issues

I. INTRODUCTION

Developers of Python third-party libraries often need to en-
sure backward compatibility when changing and maintaining
APIs to ensure that existing client code continues to function
correctly [1]–[4]. To achieve this goal, variadic parameters,
i.e., *args and **kwargs, are frequently used in APIs, as
they provide a flexible way to handle APIs with an arbitrary
number of parameters.

The *args syntax is used to pass a variable number of po-
sitional arguments, which are stored in a tuple within an API.
Similarly, **kwargs allows for passing a variable number
of keyword arguments, preserved by a dictionary within an
API. Variadic parameters provide flexible parameter-passing
methods, allowing for the renaming/removal of parameters to
an API without breaking existing API calls, thereby promoting
stronger backward compatibility.

However, improper use of variadic parameters can inadver-
tently cause compatibility issues. For the example shown in
Figure 1, the callback parameter of the fetch API is
removed in Tornado version 6.0. If the callback parameter
continues to be passed as defined in Tornado version 5.1.1, it
will be automatically categorized into kwargs upon upgrad-
ing to the new version. Subsequently, within the fetch API,
**kwargs is passed to another API, i.e., HTTPRequest [5].
Since the parameter definition of HTTPRequest does not in-
clude callback, this results in an exception, i.e., TypeError:

init () got an unexpected keyword argument ‘callback’.
We refer to this coding style as variadic parameter pit-

falls (VPPs), i.e., an API with variadic parameters internally

∗Guanping Xiao is the corresponding author.

1. # API Definitions in Tornado 6.0
2. # API HTTPRequest’s parameter definition does not support callback and **kwargs
3. class HTTPRequest(object):
4. def __init__ (self, url, method, headers, body, auth_username, auth_password,
auth_mode, connect_timeout, request_timeout, if_modified_since, follow_redirects,
max_redirects, user_agent, use_gzip, network_interface, streaming_callback, header_callback,
prepare_curl_callback, proxy_host, proxy_port, proxy_username, proxy_password,
proxy_auth_mode, allow_nonstandard_methods, validate_cert, ca_certs, allow_ipv6, client_key,
client_cert, body_producer, expect_100_continue, decompress_response, ssl_options):
5. ...
6.
7. # API fetch passes **kwargs internally to API HTTPRequest and removes callback since 6.0
8. def fetch(self, request, raise_error=True, **kwargs):
9. ...
10. if not isinstance(request, HTTPRequest):
11. request = HTTPRequest(url=request, **kwargs)
12. ...
13.
14. # Test Case
15. import tornado.httpclient
16. import tornado.ioloop
17. async def fetch_url():
18. http_client = tornado.httpclient.AsyncHTTPClient()
19. response = await http_client.fetch('http://example.com', callback=None)
20. tornado.ioloop.IOLoop.current().run_sync(fetch_url)

Fig. 1. A real-world example of variadic parameter pitfalls.

passes these parameters to other APIs that do not support
variadic parameters. In this paper, we develop a prototype tool
called VPPDETECTOR1 to detect VPPs in 33 popular Python
third-party libraries. We also investigate the prevalence and
impact of VPPs on API compatibility by examining real-world
cases. Our study provides relevant coding recommendations
to mitigate VPPs in Python development. To the best of our
knowledge, we perform the first study to explore variadic
parameters in Python.

II. OUR VPPDETECTOR APPROACH

Figure 2 shows the overview of VPPDETECTOR. VP-
PDETECTOR first utilizes Python’s built-in AST (abstract
syntax tree) module to transform the source code of Python
projects into an AST. VPPDETECTOR then traverses all
ast.FunctionDef type nodes, which correspond to the
statements of API definitions in the source code, to extract
all defined APIs. Next, VPPDETECTOR detects VPPs based
on the following three criteria:

• Rule 1. The API’s parameter definition includes variadic
parameters, i.e., *args and/or **kwargs.

• Rule 2. Within the implementation of an API filtered by
rule 1, there exists a case where variadic parameters are
passed to other APIs.

1https://github.com/raise-group/VPPDetector

Fig. 2. Detection of variadic parameter pitfalls.

• Rule 3. The called API, which receives variadic param-
eters (as per rule 2), does not define variadic parameters
in its parameter definition.

Currently, VPPDETECTOR extracts the parameter definition
of the called API from the same source file as the caller API
by searching the API’s name. The final detection results are
saved into a JSON file, which records the file and line number
where each API is located in detail.

III. EVALUATION

A. Dataset

We adopted 33 popular Python libraries selected from
PCART [4]. The selection criteria include GitHub stars, PyPI
download counts, and the API documentation detail [4]. In the
dataset, each library contains all versions up to July 2023.

B. Results and Recommendations

Through the detection on the 33 libraries by VPPDETEC-
TOR, 26 libraries have VPPs. Table I lists the top 10 libraries
by the proportion of VPPs. The table records the following
metrics: the average number of APIs with variadic parameters
defined across all versions per library, the average number of
these APIs that pass variadic parameters to other APIs, the
average number of these passed variadic parameters that are
not included in the receiving API’s parameter definition (i.e.,
the average number of VPPs in each version), and the aver-
age proportion of VPPs, i.e., 1

n

∑n
i=1

V ariadicParamPitfallsi
V ariadicParamsPassedi

,
where n is the total number of versions and i is the ith
version. Table I shows that TensorFlow has the highest average
number (886) of APIs with variadic parameters defined across
all versions. Despite this, Pillow has the highest proportion of
VPPs, reaching 35.74%.

Although VPPs do not necessarily indicate true
incompatibility, they pose a potential risk to API
compatibility. Our further manual analysis reveals that
VPPs could cause compatibility issues when APIs with
variadic parameters undergo parameter renaming or
removal. For instance, in Matplotlib version 3.4.3, calling
Shadow(patch, ox, oy, props=None) is feasible.
However, when upgrading to Matplotlib version 3.5.0, since
the props parameter is removed in the new version [6],
continuing to pass this parameter will also be classified into
variadic parameters (i.e., **kwargs). When these variadic
parameters are subsequently passed to the update API [7],

TABLE I
DISTRIBUTION OF VARIADIC PARAMETER USAGE IN THE TOP 10

LIBRARIES BY VARIADIC PARAMETER PITFALL RATE.
Library Version

Num
Avg. APIs with

Variadic Params
Avg. Variadic

Params Passed
Avg. Variadic
Param Pitfalls

Avg. Variadic
Param Pitfall Rate

Pillow 75 62 25 9 35.74%
Requests 107 43 39 7 18.12%
aiohttp 216 63 49 8 14.37%
Faker 292 21 17 2 10.23%

Gensim 48 55 46 3 8.58%
Click 53 30 27 2 6.73%

scikit-learn 42 178 119 7 6.44%
XGBoost 31 25 18 1 6.43%

SciPy 66 388 310 19 6.22%
TensorFlow 76 886 671 37 5.76%

it will throw an exception, i.e., AttributeError: ‘Shadow’
object has no property ‘props’.

To mitigate VPPs, our recommendations are as follows:
• Recommendation 1. When passing variadic parameters

to an API, developers should ensure that the called API’s
parameter definition includes variadic parameters.

• Recommendation 2. Parse the variadic parameters first
to identify those that will be used, and then pass only
those parameters to an API, rather than simply passing
variadic parameters.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we conducted a preliminary study to explore
variadic parameter pitfalls (VPPs) and their potential risk
to API compatibility by a prototype tool (VPPDETECTOR).
While variadic parameters are intended to enhance parameter-
passing flexibility and backward compatibility, improper usage
can introduce subtle yet significant compatibility challenges.
Our findings provide better coding recommendations for de-
velopers aiming to design robust APIs and offer preliminary
insights for researchers interested in API evolution and com-
patibility issues. In our future work, we will further analyze
the change patterns of variadic parameters and VPPs during
the evolution of Python library APIs, as well as the intentions
behind developers’ use of these parameters.

ACKNOWLEDGMENT

This work was supported by National Natural Science Foun-
dation of China under Grant 62002163 and Natural Science
Foundation of Jiangsu Province under Grant BK20200441.

REFERENCES

[1] Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, and Y. Xiong, “How do
python framework apis evolve? an exploratory study,” in SANER. IEEE,
2020, pp. 81–92.

[2] J. Wang, G. Xiao, S. Zhang, H. Lei, Y. Liu, and Y. Sui, “Compati-
bility issues in deep learning systems: Problems and opportunities,” in
ESEC/FSE. ACM, 2023, pp. 476–488.

[3] H. Lei, S. Zhang, J. Wang, G. Xiao, Y. Liu, and Y. Sui, “Why do deep
learning projects differ in compatible framework versions? an exploratory
study,” in ISSRE. IEEE, 2023, pp. 509–520.

[4] S. Zhang, G. Xiao, J. Wang, H. Lei, Y. Liu, Y. Sui, and Z. Zheng, “Pcart:
Automated repair of python api parameter compatibility issues,” arXiv
preprint arXiv:2406.03839, 2024.

[5] Tornado, “Httprequest,” Retrieved July 14, 2024 from https://github.com/
tornadoweb/tornado/blob/v6.0.0/tornado/httpclient.py#L337, 2024.

[6] Matplotlib/Shadow, “matplotlib.patches.shadow,” Retrieved July 14, 2024
from https://github.com/matplotlib/matplotlib/blob/v3.5.0/lib/matplotlib/
patches.py#L637, 2024.

[7] Matplotlib/update, “matplotlib.artist.artist.update,” Retrieved July 14,
2024 from https://github.com/matplotlib/matplotlib/blob/v3.5.0/lib/
matplotlib/artist.py#L1046, 2024.

