
The Automatic Classification of Fault Trigger Based
Bug Report

Xiaoting Du, Zheng Zheng∗, Guanping Xiao, Beibei Yin
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

Email: {xiaoting 2015, zhengz, gpxiao, yinbeibei}@buaa.edu.cn

Abstract—Understanding the types of defects is of practical
interest, which could help developers adopt proper measures
in current and future software releases. As the amount of bug
reports increasing, manual classification brings a heavy burden
to developers. In this paper, we propose a word2vec based
framework of multi-granularity automatic classification for bug
reports based on fault triggers. Except classifying bug reports
into bug/non-bug and Bohrbug/Mandelbug, the classification of
Mandelbugs is the focus of this paper. Characteristic representa-
tion of common classification methods suffer from data sparsity
and high dimensionality, thus we use word2vec, which can express
words as low-dimensional word vectors with semantic relations
in this paper. Furthermore, in order to improve the quality of
classification, we analyzed the impact factors of classification.
The results show that our method performs well in automatic
classifying bugs into fault trigger classes.

Index Terms—fault trigger; automatic classification; bug re-
port; word2vec; Mandelbug;

I. INTRODUCTION

Fault classification is of practical interest. Although signifi-

cant efforts have been spent during software development and

maintenance, failures are still a major concern. Understanding

the types of defects can help developers take specific steps in

current and future software releases. Grottke and Trivedi intro-

duced a new classification method that dividing bugs into two

categories: Bohrbug (BOH) and Mandelbug (MAN), according

to the failure manifestation perspective [1]. Bohrbug is easy to

be isolated, and whose manifestation is consistent under a fail-

ure. In contrast, Mandelbug is a special kind of faults, whose

activation and/or error propagation is complex and difficult to

be discovered by traditional techniques. Recent studies have

focused on understanding the characteristics of Mandelbugs,

including the proportion of Mandelbugs in all defects [2] ,

how to predict the location of Mandelbugs [3] and how to deal

with failures caused by Mandelbugs [4]. Moreover, Mandelbug

has two subcategories: non-aging related Mandelbug (NAM)

and aging-related bug (ARB). Aging-related bug, which is

first observed by Huang et al. [5], can cause an increasing

failure rate and/or degraded performance [6]. Researchers in

[7] proposed a more detailed bug type classification of aging-

related bug and non-aging-related Mandelbug based on fault

triggering conditions.

A more accurate classification of bug reports could be

highly beneficial to analysis and research, since each type

∗Corresponding author: Z. Zheng (Email: zhengz@buaa.edu.cn).

of defects needs to be tackled with corresponding measures,

e.g., defects in Linux operating system [8]. However, with the

increasing of the amount of bug reports, manual classification

would bring a heavy burden to developers. Thus, it is necessary

to help developers in classifying bug reports more efficiently

(e.g., automatic classification). However, the study of fault

trigger based bug report automatic classification is still rare.

To the best of our knowledge, the only work so far is that in

2014, Xia et al. [9] proposed a fuzzy set based feature selection

algorithm focusing on automatic classification of BOH/MAN

categories of bugs. However, their work didn’t address the

automatic classification of subcategories of MAN, such as,

NAM and ARB, as well as their subtypes. Therefore, it is

necessary to be further studied.

In this paper, we develop a word2vec based automatic

classification framework to classify bug reports into fault

trigger categories from four-granularities. Since the introduc-

tion of word2vec by Google in 2013, it has been used to

solve software engineering problems in several studies and

has achieved good performance [10], [11]. The reasons why

we choose word2vec as the based technique to develop an

automatic classification approach are in the following.

First, previous study showed that linguistic information con-

tained in bug tracking system entries is sufficient to automati-

cally classify bug reports [12]. The bag-of-words model, which

is widely used in bug report classification, can not express the

semantic information of words and therefore sometimes would

fail to achieve the desired accuracy. Word2vec, unlike the bag-

of-words model, can bring additional semantic features by

converting words and phrases into vector representations. This

is helpful for classifying reports. Also, studies have shown

that word2vec performs well in text categorization [13], [14].

Second, when encountering a large dataset, the dimensionality

of the text represented by a vector space model (VSM) is the

same as the number of all words that appear in the training

dataset. Thus, it would lead to the curse of dimensionality.

However, word embeddings trained by word2vec can avoid

this problem by transferring words into K-dimensional vec-

tors, where K is a constant. The parameter can be set up while

training the model.

We train a word2vec model on bug report corpus. Based

on the obtained word embeddings, four-granularities classifi-

cation of bug reports are performed through machine learning

classifiers. Moreover, factors that affecting the classification

2017 IEEE 28th International Symposium on Software Reliability Engineering Workshops

978-1-5386-2387-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ISSREW.2017.28

259

Fig. 1. Overall framework.

results are analyzed. In this study, we mainly focus on the

following two research questions.
RQ1: How to perform the multi-granularity bug report

automatic classification?
To answer the question, four-granularities automatic clas-

sification of bug reports, including bug/non-bug; BOH/MAN;

ARB/NAM and the subtypes of NAM/ARB, is performed.
RQ2: What factors would affect the classification re-

sults?
In this part, the influences of word2vec model size and the

domain of word2vec model training corpora on the classifica-

tion results are explored.
The rest of the paper is organized as follows. Section II

presents related work. Approach is described in Section III. In

Section IV, the experiments and results analysis are presented.

Section V presents the threats to validity. Finally, conclusion

is given in Section VI.

II. RELATED WORK

In this section, we first highlight the most related works

about fault trigger based bug classification. Then, we present

the researches and applications of word2vec in software engi-

neering.
In 2008, Antonial et al. [12] first found that not all bug

reports contain actual bugs, i.e., some problem reports con-

cerning requests for defect fixing, enhancements, organiza-

tional issues, etc., are not considered as actual bugs. According

to the fault trigger based classification method, Grottke et

al. [6] examined the proportions of BOHs and MANs in

JPL/NASA space mission critical software. Researchers in [7]

extended a more explicit category of MAN, and concentrated

on bug classification from four open source projects including

Linux, MySQL, HTTPD and AXIS. Recently, the detailed

distributions of subtypes of MANs in mobile operating system

and Linux operating system are studied in [15] and [8],

respectively.
Although several classification studies based on fault trigger

conditions have been taken, all these works were performed

manually, except for [9] and [16]. In [16], Frattini et al.

automatically classified bug reports into workload-dependent

and environment-dependent according to reproducibility char-

acteristics. Xia et al. [9] developed a fuzzy set based feature

selection algorithm for BOH/MAN automatic classification. In

their work, evaluation experiments were conducted on Linux,

MySQL, HTTPD, and AXIS, and the numbers of bug reports

of these datasets are 267, 202, 141, and 199, respectively.

The performance evaluation of their method mainly focuses

on MANs classification. However, their work didn’t address

the subtypes classification of MAN. Thus, it is necessary to

develop a fault trigger based bug report automatic classifica-

tion method from more detailed granularities.

Other works related to the word embedding techniques

used in our method are demonstrated in the following. There

are many works for automatic classification of text [17],

[18]. Most of them are implemented through the bag-of-

words model, which can not express semantic information

and would easily lead to dimension disaster. Recently, some

novel models based on neural networks have been proposed

[19], [20]. These models use deep neural networks to learn the

context of the corpus to generate low-dimensional word vector

representations called “word embedding” that can express the

semantic information of words. In 2013, Google introduced

a tool called word2vec, which is an efficient implementation

of the continuous bag-of-words and skip-gram architectures

for computing vector representations of words [21], [22].

Word2vec has been used for text classification works [23]

and produce outstanding results. Moreover, word2vec is an

unsupervised learning method that allows us to learn word

vectors from a large number of unlabeled bug reports from

bug tracking systems.

III. APPROACH

In this section, we first introduce the main idea of this work.

Then, we present the whole work frame. At last, we focus on

the process of word embedding training and present a brief

analysis of the word vectors trained via bug reports.

A. Main idea

The main goal of our research is to propose a multi-

granularity automatic classification framework for bug re-

ports. In addition to the classification of bug/non-bug and

Bohrbug/Mandelbug, we further classify Mandelbug into

260

aging-related bug and non-aging-related bug. Moreover, sub-

types of aging-related bug and non-aging-related bug are also

considered in the classification.

There are several classification algorithms commonly used

in automatic classification of bug reports [24], [25]. In the im-

plementation of these algorithms, documents are usually rep-

resented via bag-of-word features or by their term frequency-

inverse document frequency. However, bag-of-words features

suffer from data sparsity and high dimensionality. They treat

words as atomic units, which couldn’t capture semantic infor-

mation between words. To mitigate this problem, we develop

a word2vec based automatic classification method to classify

bug reports into fault trigger categories. Word2vec model

can express words as low-dimensional word embeddings with

semantic relations, and the more similar the words, the closer

their positions are in the vector space. This would be beneficial

in bug report classification.

B. Overall Framework

Fig. 1 depicts the overall framework of our approach. The

framework consists of four steps, each of which will be

described in detail below.

• Data collection. In this step, two parts of data are needed

to be collected. One part of them is unlabeled bug reports

used for word2vec model training. We extract bug reports

to a local computer from bug tracking systems by a web

crawler that we designed. The other part of bug reports

are labeled, which will be used for classifier training and

testing.

• Data clean and pre-processing. For unlabeled data, sum-

mary and description parts of bug reports are extracted.

While for labeled data, only summary part is needed.

The extracted data is further cleaned and pretreated (i.e.,

word tokenization, remove stop words and punctuations,

and lemmatization).

• Training word vectors. The vector representation of the

word is generated through skip-gram model of word2vec.

For two word vectors, cosine similarity between them

determines their similarity. The greater the value, the

closer the semantics of the two vectors are. The generated

word vectors would be used as features of the bug reports.

• Classification. This is the last step. The input data of

the classifiers is the labeled data generated from step

2. After getting the vector representation of each bug

report, random cross validation is taken to evaluate the

performance of our method. Training data is used to

train classifiers, and testing data is used to verify the

performance of the classifiers. The evaluation metrics

used in this paper are accuracy and F-measure.

C. Training Word Vectors

In this part, we focus on the process of training the word

embeddings, and analyze the quality of the word embeddings

trained via bug reports.

There are two algorithms available in word2vec, continuous

bag-of-words and continuous skip-gram [21], [22]. These

Fig. 2. An example of skip-gram model.

models use deep neural networks to learn the context of the

corpus to generate low-dimensional word vector representa-

tions, which is called “word-embedding”. Continuous bag-of-

words model predicts the current word based on its context,

while skip-gram model predicts the surrounding words given

the current word.

Our work uses the skip-gram model, which has been used

to solve software engineering tasks and work well [10], [11].

Specifically, for given a current word wt, we denote the

set of the context of wt as Contextwt . Taking a MEM

bug as an example, whose bug report’s summary is “mem-

ory leak somewhere in toshiba acpi”. Fig. 2 illustrates the

training procedure employed by the skip-gram model when

it reaches the current word wt = somewhere, which is

mapped to its word vector vwt . It is used to predict the

word vectors of its left and right C surrounding words

(note, C = 2). The context words of wt = somewhere is

Contextwt
= {memory, leak, toshiba, acpi}. The training

process optimizes the word embedding vwt
and the neural

network model parameters to maximize the objective function

f .

f =
1

T

T∑
t=1

∑
wc∈Contextwt

logp(wc|wt) (1)

In Eq. (1), wc is the word in context of wt. T denotes the

whole length of the word sequence. The probability p(wc|wt)
is also formulated using a soft-max function:

p(wcεContextwt
|wt) =

exp
{
vTwc

· vwt

}
∑W

j=1 exp
{
vTwj

· vwt

} (2)

Where vwc
is the word vector of word wc, and W is the

vocabulary length of all words.

For training the skip-gram model, we use a large dataset

containing 134277 bug reports from Linux, MySQL, HTTPD

and AXIS. All the words in the vocabulary of the corpus can be

represented as a K-dimensional vectors where K is a variable

parameter and its value is set as 350.

To measure the quality of word vectors, we present three

example words and their similar words (i.e., error, bug and

memory) in Table I. Note, the similarity between two words

is measured by cosine distance. For instance, the greater the

261

TABLE I
EXAMPLES OF SIMILAR WORDS AND THEIR SIMILARITIES.

error bug memory
Words & Similarity Words & Similarity Words & Similarity
stating 0.663 failed 0.728 consumption 0.657

saying 0.612 filing 0.689 addresssanitizer 0.643

errorcode 0.601 issue 0.665 leaked 0.626

paradox 0.581 investigating 0.646 permgen 0.619

eror 0.577 apology 0.643 excessive 0.616

ioerror 0.571 bugfix 0.636 grow 0.615

value, the closer the semantics of the two vectors are. It can

be observed that most of similar words are synonyms, such

as errorcode is like error, issue is similar to bug. There are

some other cases that output words are common matched, such

as leaked with memory, memory error detector (e.g., address-
sanitizer) with memory. This shows that the word vectors can

present semantic information between words preferably.

To represent a sentence, we average the vectors of all the

words in it. Each sentence can be represented as a word

embedding vector, which would be further used as an input of

machine learning classifiers.

IV. EXPERIMENTS AND RESULT ANALYSIS

In this section, we first present experiment setups, and then

investigate the two questions proposed in Section I.

A. Experiment Setups

Five datasets are used to evaluate our method: Linux data1,

Linux data2, MySQL, HTTPD, and AXIS, as shown in Table

II (#reports means the number of reports). Among them, Linux

data1 is a manual classified dataset from [8]. The other four

labeled datasets are provided by [7].

We first perform the experiments on Linux data1 and

classify bug reports from four-granularities. In addition, to

compare with the classification results of BOH/MAN obtained

by Xia et al. [9], we implement the experiment using the same

datasets form Ref. [7].

For RQ2, we download the word2vec model trained

by Google named “GoogleNews-vectors-negative300.bin.gz”,

which contains 3 million words from Google News. Besides,

we train another word2vec model using bug report corpus.

Its dimension of vectors is 300, which is same as Google’s

model. Details of the two models are displayed in Table III.

Note that, #words for training means the number of words

TABLE II
DETAILS OF DATASETS.

Project #reports Time frame
Linux data1 5741 Nov 2002 - Nov 2016

Linux data2 346 Jul 2003 - May 2011

MySQL 244 Aug 2006 - Feb 2011

HTTPD 157 Mar 2002 - Oct 2007

AXIS 216 Jul 2001 - Nov 2005

TABLE III
DETAILS OF WORD2VEC MODELS.

Model #words for training #words in model
Google news 100 billion 3 million

Bug reports 16 million 60 thousand

Fig. 3. Multi-granularity automatic classification.

used for training the model, while #words in model means

the number of words in model dictionary. Based on these two

models, experiments are carried on all the five datasets in Table

II.

B. Multi-granularity Classification of Bug Reports

In this part, we take four-granularities classification on the

5741 bug reports from Linux kernel Bugzilla, as depicted in

Fig. 3. The four-granularities include: (1) bug/non-bug; (2)

BOH/MAN; (3) ARB/NAM; (4) subtypes of ARB/NAM. Note

that, the subclasses of ARB are LOG, MEM, NUM, STO and

TOT, while the subclasses of NAM include TIM, ENV, LAG

and SEQ [7]. In the following, seven classifiers are used for

comparing, including Stochastic Gradient Descent classifier

(SGD), Logistic Regression Classifier (LR), Gaussian Naive

Bayes (GNB), Gradient Boosting Classifier (GBC), Decision

Tree Classifier (DTC), Random Forest Classifier (RFC) and

Linear Discriminant Analysis classifier (LDA).

1) Granularity 1: bug and non-bug: In this part, reports

concerning requests for new features or for enhancements,

documentation issues (e.g., missing, outdated documentation,

or harmless warning output), compile-time issues (e.g., make

errors or linking errors), operator errors and duplicates, would

be regarded as non-bugs. Otherwise, they are bugs. For Linux

data1, among 5741 bug reports, 4378 reports were identified as

actual bugs, the proportion is 76.26% [8]. It means that 23.74%

are not real bugs. The results of bug/non-bug classification are

shown in Table IV. We get 71.8–83.4% accuracy rate, and

F-measures of bug and non-bug are 80.9–90% and 46–61%,

respectively.

2) Granularity 2: BOH and MAN: The real bugs can be

further divided into BOHs and MANs, which is the second

granularity considered in this paper. Among 4378 real bugs in

Linux data1, 2444 are BOHs, accounting for 55.82%, while

262

TABLE IV
RESULTS OF BUG/NON-BUG CLASSIFICATION.

F-measure
Classifier Accuracy

bug non-bug Avg.
SGD 0.773 0.848 0.540 0.774

LR 0.832 0.893 0.610 0.842
GNB 0.740 0.815 0.557 0.729

GBC 0.829 0.894 0.565 0.848

DTC 0.718 0.809 0.460 0.715

RFC 0.791 0.866 0.528 0.802

LDA 0.834 0.900 0.598 0.848

TABLE V
RESULTS OF BOH/MAN CLASSIFICATION.

F-measure
Classifier Accuracy

BOH MAN Avg.
SGD 0.621 0.688 0.517 0.622

LR 0.682 0.750 0.560 0.688
GNB 0.663 0.716 0.586 0.661

GBC 0.691 0.765 0.547 0.703
DTC 0.590 0.658 0.489 0.589

RFC 0.629 0.694 0.529 0.629

LDA 0.677 0.747 0.553 0.684

TABLE VI
COMPARISON WITH USES [9].

Evaluation Techniques HTTPD Linux MySQL AXIS Avg.
USES 0.375 0.524 0.615 0.298 0.453

word2vec+GNB 0.466 0.580 0.615 0.449 0.528MAN F-measure

Impro. 24.267% 10.687% 0.000% 50.671% 16.556%
USES 0.872 0.587 0.758 0.906 0.781

word2vec+GNB 0.910 0.517 0.765 0.947 0.785BOH F-measure

Impro. 0.436% -11.925% 0.923% 4.525% 0.512%
USES 0.787 0.558 0.703 0.834 0.721

word2vec+GNB 0.847 0.553 0.709 0.904 0.753Accuracy

Impro. 7.624% -0.896% 0.853% 8.393% 4.438%

1591 are MANs, accounting for 36.34% [8]. We classify 4035

labeled bug reports (i.e., BOHs + MANs) into BOHs and

MANs automatically, and the results are exhibited in Table V.

We get 59–69.1% accuracy rate, 65.8–76.5% and 48.9–58.6%

F-measure of Bohrbug and Mandelbug, respectively.

In [9], Xia et al. have performed this granularity auto-

matic classification in four software systems. To verify the

effectiveness of our method, an evaluation is made using the

same datasets [7], as shown in Table II. Due to the difficulty

in classifying MANs manually, the performance of MAN

classification results should be paid more attention. Therefore,

in this comparison experiment, GNB classifier is used, which

got the best MAN F-measure evaluation in Table V. Table

VI presents the results comparing with the method in [9]. It

can be observed that, our method improves the F-measures of

MAN by 24.267%, 10.687% and 50.671% for HTTPD, Linux

and AXIS, respectively. The improvement of average MAN

F-measure of the proposed method is 16.556%.

3) Granularity 3: NAM and ARB: MAN could be further

categorized as ARB and NAM, depending on whether the bug

is aging-related or not. This is the third granularity. More

detailed categories would help developers implement effective

test policies or fault mitigation methods when dealing with

these bugs. According to Linux data1 [8], there are 205 ARBs,

which accounts for 12.88% of 1591 MANs. The results of

automatic classification are shown in table VII. Note that, with

respect to all classifiers, the accuracy rates range from 75.3%

to 88.2%, while the range of F-measures of ARB and NAM

are 19.2% to 39% and 84.6% to 93.5%, respectively.

TABLE VII
RESULTS OF ARB/NAM CLASSIFICATION.

F-measure
Classifier Accuracy

ARB NAM Avg.
SGD 0.856 0.358 0.919 0.865

LR 0.856 0.390 0.918 0.861

GNB 0.753 0.371 0.846 0.721

GBC 0.882 0.303 0.935 0.909
DTC 0.797 0.260 0.882 0.792

RFC 0.874 0.192 0.932 0.912
LDA 0.841 0.369 0.909 0.843

4) Granularity 4: Subtypes of NAM/ARB: This is the forth

granularity. Researchers in [7] defined more detailed subtypes

for ARB (i.e., MEM, STO, LOG, NUM and TOT) and NAM

(i.e., ENV, LAG, TIM and SEQ). The results of these two

aspects are presented in the following.

Automatic classification of ARB subtypes: In Linux data1

[8], the largest subtype of ARB is MEM, whose number of

bugs is 141 account for 68.78% of 205 ARBs. The number

of STO, NUM, LOG and TOT are 16 (7.8%), 12 (5.85%), 11

(5.37%) and 3 (1.46%), respectively. The remaining 22 bugs

couldn’t be classified, due to the lack sufficient information.

Since the number of TOT is only 3, this subtype is ignored

in this experiment. The automatic classification results are

presented in Table VIII. It can be observed that the range

of accuracy rates are from 65.0% to 78.1%, while the average

F-measures are from 65.5% to 74.4%.

263

TABLE VIII
RESULTS OF ARB/NAM SUBTYPES CLASSIFICATION.

ARB NAM
F-measure F-measure

Classifier Accuracy
LOG MEM NUM STO Avg.

Classifier Accuracy
ENV LAG TIM Avg.

SGD 0.652 0.066 0.795 0.215 0.227 0.661 SGD 0.548 0.558 0.436 0.591 0.548

LR 0.675 0.072 0.809 0.258 0.241 0.678 LR 0.549 0.560 0.436 0.593 0.550

GNB 0.781 0.111 0.876 0.268 0.165 0.744 GNB 0.576 0.619 0.432 0.584 0.586
GBC 0.740 0.026 0.855 0.155 0.137 0.696 GBC 0.587 0.610 0.724 0.626 0.592
DTC 0.650 0.056 0.800 0.135 0.159 0.655 DTC 0.478 0.497 0.358 0.520 0.480

RFC 0.776 0.015 0.876 0.135 0.127 0.720 RFC 0.548 0.584 0.390 0.575 0.550

LDA 0.661 0.071 0.801 0.199 0.230 0.666 LDA 0.478 0.492 0.377 0.522 0.486

Automatic classification of NAM subtypes: According to

Linux data1 [8], the number of ENV, LAG, TIM and SEQ are

506 (36.51%), 265 (19.12%) 516 (37.23%), and 10 (0.72%),

respectively. In this part, we only consider subtypes ENV,

TIM and LAG, since these subtypes are the major classes

of NAM according to previous studies [7], [8], [15], and they

have sufficient samples for the classification. The automatic

classification results are exhibited in Table VIII. The results

show that the accuracy rates range from 54.8% to 58.7%, while

the average F-measures are from 48.0% to 59.2%.

C. Impact Factors of Classification Results

In the following, we investigate the impact of two factors

on the classification results, i.e., word2vec model size and

word2vec model training corpus’ domain.

1) The Effect of Model Size on Classification Results: For

training word2vec model, we used a total number of 134277

bug reports from HTTPD, Linux, MySQL and AXIS. Since

the most important thing in the process of model training

is to learn the semantic information of the sentence in the

reports, we use both summaries and descriptions of bug reports

as model training corpus. Therefore, the number of items in

training corpus is 268554. In order to analyze the impact

of word2vec model size on classification results, we built

several different size of the word2vec models using randomly

selected items from the training corpus (i.e., the number of

training corpus items ranging from 20000 to all items). The

Fig. 4. The effect of model size on classification results. (a) The influence
of model size on accuracy. (b) The influence of model size on F-measure.

experiments are conducted in the datasets of Table II with

GNB classifier, and the results are depicted in Fig. 4. It can

be seen that with the increasing of model size, both accuracy

and F-measure are improved. Therefore, we can conclude that

the classification results can be further improved by increasing

the corpus size.

2) The Effect of Model Training Corpus’ domain on Classi-
fication Results: In this part, we evaluate the impact of training

corpora from different domains on classification results. Exper-

iments are performed on all the five datasets (i.e., datasets in

Table II) using both the Google news model and the model we

have trained with bug reports. Note that, GNB classifier is used

in this part. As displayed in Fig. 5, although the corpus used

in our model contains less than sixty thousand words, which is

significant smaller than the Google news model (exhibited in

Table III), the classification results (i.e., average accuracy and

F-measure across all the five datasets) obtained by our model

are better than that gotten by Google news. This indicates

that the classification results would be affected by the domain

of training corpus of the word2vec model. A more relevant

training corpus can bring better classification performance.

V. THREATS TO VALIDITY

In this part, we identify the following threats that might

appear in this paper.

Fig. 5. The effect of model type on classification results. (a) The influence
of model training corpus’ domain on accuracy. (b) The influence of model
training corpus’ domain on F-measure.

264

Internal threats: the experiments are performed on datasets

provided by Refs. [7] and [8]. Although We have conducted

our experiments carefully and removed the duplicated bugs

from the datasets, there may still have errors that we have not

noticed. Besides, since the reports are written by users and

developers, the accuracy and completeness of the description

could also influence the automatic classification results.

External threats: we use hundreds of thousands of bug

reports for word vectors training, but the word vectors can be

further improved. In the future, we plan to mitigate this threat

further by implement a larger corpora to make the results more

accurate.

VI. CONCLUSION

In this paper, we proposed a word2vec based automatic

classification method for categorizing bug reports into fault

trigger classes from four-granularities, including bug/non-bug,

BOH/MAN, ARB/NAM and subtypes of ARB/NAM. The

empirical study was mainly performed on the manual classified

dataset which includes 5741 bug reports from Linux kernel

Bugzilla. Seven different classifiers were used for compari-

son, it is shown that our method performs well and results

obtained by each classifier are different at various granularities.

Moreover, the impact factors of classification results were

investigated. It is found that with the increasing of word2vec

model size, the performance of automatic classification would

improve either. Furthermore, the domain of word2vec training

corpus would also influence the classification result, which

indicates that the more relevance domain of training corpus of

word2vec model, the better classification performance.

In the future, we plan to further improve the effectiveness

of our approach by using more bug reports to train the

model. We will also explore more factors that would affect

the classification results.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science

Foundation of China (Grant No. 61772055).

REFERENCES

[1] M. Grottke and K. S. Trivedi, “A classification of software faults,”
Journal of Reliability Engineering Association of Japan, vol. 27, no. 7,
pp. 425–438, 2005.

[2] R. Chillarege, “Understanding bohr-mandel bugs through odc triggers
and a case study with empirical estimations of their field proportion,”
in Software Aging and Rejuvenation (WoSAR), 2011 IEEE Third Inter-
national Workshop on. IEEE, 2011, pp. 7–13.

[3] G. Carrozza, D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo,
“Analysis and prediction of mandelbugs in an industrial software sys-
tem,” in Software Testing, Verification and Validation (ICST), 2013 IEEE
Sixth International Conference on. IEEE, 2013, pp. 262–271.

[4] M. Grottke, D. S. Kim, R. Mansharamani, M. Nambiar, R. Natella, and
K. S. Trivedi, “Recovery from software failures caused by mandelbugs,”
IEEE Transactions on Reliability, vol. 65, no. 1, pp. 70–87, 2016.

[5] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvena-
tion: Analysis, module and applications,” in Fault-Tolerant Computing,
1995. FTCS-25. Digest of Papers., Twenty-Fifth International Sympo-
sium on. IEEE, 1995, pp. 381–390.

[6] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation
of fault types in space mission system software,” in Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International Conference on.
IEEE, 2010, pp. 447–456.

[7] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi,
“Fault triggers in open-source software: An experience report,” in
Software Reliability Engineering (ISSRE), 2013 IEEE 24th International
Symposium on. IEEE, 2013, pp. 178–187.

[8] G. Xiao, Z. Zheng, B. Yin, K. S. Trivedi, X. Du, and K. Cai, “Expe-
rience report: Fault triggers in linux operating system: From evolution
perspective,” in Software Reliability Engineering (ISSRE), 2017 IEEE
28th International Symposium on. IEEE, 2017.

[9] X. Xia, D. Lo, X. Wang, and B. Zhou, “Automatic defect categoriza-
tion based on fault triggering conditions,” in Engineering of Complex
Computer Systems (ICECCS), 2014 19th International Conference on.
IEEE, 2014, pp. 39–48.

[10] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining word embed-
ding with information retrieval to recommend similar bug reports,” in
Software Reliability Engineering (ISSRE), 2016 IEEE 27th International
Symposium on. IEEE, 2016, pp. 127–137.

[11] Y. Uneno, O. Mizuno, and E.-H. Choi, “Using a distributed represen-
tation of words in localizing relevant files for bug reports,” in Software
Quality, Reliability and Security (QRS), 2016 IEEE International Con-
ference on. IEEE, 2016, pp. 183–190.

[12] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in Proceedings of the 2008 conference of the center for
advanced studies on collaborative research: meeting of minds. ACM,
2008, p. 23.

[13] D. Rahmawati and M. L. Khodra, “Word2vec semantic representation
in multilabel classification for indonesian news article,” in Advanced
Informatics: Concepts, Theory And Application (ICAICTA), 2016 Inter-
national Conference On. IEEE, 2016, pp. 1–6.

[14] M. Hughes, I. Li, S. Kotoulas, and T. Suzumura, “Medical text
classification using convolutional neural networks,” arXiv preprint
arXiv:1704.06841, 2017.

[15] F. Qin, Z. Zheng, X. Li, Y. Qiao, and K. S. Trivedi, “An empirical
investigation of fault triggers in android operating system,” in Depend-
able Computing (PRDC), 2017 IEEE 22nd Pacific Rim International
Symposium on. IEEE, 2017, pp. 135–144.

[16] F. Frattini, R. Pietrantuono, and S. Russo, “Reproducibility of software
bugs,” in Principles of Performance and Reliability Modeling and
Evaluation. Springer, 2016, pp. 551–565.

[17] F. Sebastiani, “Machine learning in automated text categorization,” ACM
computing surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[18] M. Lan, C.-L. Tan, H.-B. Low, and S.-Y. Sung, “A comprehensive
comparative study on term weighting schemes for text categorization
with support vector machines,” in Special interest tracks and posters of
the 14th international conference on World Wide Web. ACM, 2005,
pp. 1032–1033.

[19] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” Journal of machine learning research, vol. 3,
no. Feb, pp. 1137–1155, 2003.

[20] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160–167.

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[23] J. Lilleberg, Y. Zhu, and Y. Zhang, “Support vector machines and
word2vec for text classification with semantic features,” in Cognitive
Informatics & Cognitive Computing (ICCI* CC), 2015 IEEE 14th
International Conference on. IEEE, 2015, pp. 136–140.

[24] M. Y. Javed, H. Mohsin et al., “An automated approach for software bug
classification,” in Complex, Intelligent and Software Intensive Systems
(CISIS), 2012 Sixth International Conference on. IEEE, 2012, pp. 414–
419.

[25] Y. Zhou, Y. Tong, R. Gu, and H. Gall, “Combining text mining and data
mining for bug report classification,” Journal of Software: Evolution and
Process, vol. 28, no. 3, pp. 150–176, 2016.

265

