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ABSTRACT

In empirical software engineering (EMSE), various activities re-
quire human participation, such as data collection, processing,
analysis, and comprehension. On one hand, these processes are
time-consuming and labor-intensive. On the other hand, human
participation may introduce bias. With the rise of large language
models (LLMs) like ChatGPT, the potential for these models to en-
hance productivity has become apparent. However, the auxiliary
capabilities and effectiveness of LLMs in EMSE tasks have rarely
been explored. To fill this gap, in this paper, we evaluate the per-
formance of LLMs by using scenarios of human participation in
EMSE tasks, i.e., EMSEBENCH. We conduct replication experiments
using four LLMs (ChatGPT4.0, ERNIE Bot4.0, Gemini3.0, and Chat-
GLM4.0), evaluating the difference in performance across seven
scenarios collected from papers published in top SE venues. In the
experiments, we perform three types of prompts, i.e., zero-shot,
one-shot, and optimized one-shot. Besides, we leverage the concept
of multi-agent workflow to explore the performance improvement
and limitations of LLMs. Our study summarizes six findings, which
facilitate the understanding of the auxiliary of LLMs in EMSE tasks.
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1 INTRODUCTION

Large language models (LLMs) are considered one of the crucial
pathways toward artificial general intelligence (AGI) [31]. On No-
vember 30, 2022, OpenAl introduced ChatGPT (Chat Generative
Pre-Trained Transformer) [23], which reached 100 million active
users within two months. Over the past year, the impact of LLMs
has been truly transformative, revolutionizing academic research
and various industrial applications.

One of the key factors making current LLMs both usable and
popular is the alignment technique. Alignment refers to the process
of ensuring that the behavior of LLMs aligns with human values
and preferences [20]. Based on this, scientifically evaluating the
performance of LLMs has become a hot research topic. Research
on LLM evaluation aims to increase transparency and provide a
more comprehensive assessment of these models, further providing
improvement guidelines.

To evaluate LLMs, several benchmarks have been proposed, such
as ScIEvAL [29], SciBEncH [30], JEEBENcH [1], AGIEvaAL [37], C-
Evar [12], and M3KE [18]. These benchmarks adopt diverse eval-
uation scenarios and metric dimensions, considering a broader
range of model application contexts. Metrics have evolved from
single metric to multi-dimensional metrics, including reliability,
safety, fairness, resistance to misuse, explainability and reasoning,
adherence to social norms, and robustness [20].

Due to the capability of LLMs in code understanding and gen-
eration, many LLM benchmarks built upon code-related tasks in
software engineering (SE) have been released like HuMANEVAL [4],
MBPP [2], HumaNEvAL" [19], and EvoEvaL [32]. However, few
have considered evaluating LLMs from the perspective of replicat-
ing human participation scenarios in empirical software engineer-
ing (EMSE) tasks, such as manual labeling, analysis, and knowledge
comprehension and creation [27].

To fill this gap, in this paper, we introduce EMSEBENCH, con-
taining human participation scenarios and corresponding datasets
from EMSE tasks, to evaluate LLMs. We first collect seven human
participation scenarios (e.g., bug classification) and their datasets
from the top SE venues (i.e., ICSE, FSE, and ASE) over the past three
years (21-23). Then, we design different prompts using the collected
scenarios to evaluate LLMs (i.e., ChatGPT3.5/4.0 [23], Gemini3.0 [9],
ERNIE Bot4.0 [3], and ChatGLM4.0 [36] ) in both single-agent and
multi-agent workflows. Our work mainly focuses on answering the
following two research questions (RQs).

RQ1. Can empirical software engineering tasks evaluate the per-
formance of LLMs? In this RQ, we use EMSEBENCH to evaluate four
LLMs (ChatGPT4.0, Gemini3.0, ERNIE Bot4.0, and ChatGLM4.0)
with three types of prompts (i.e., zero-shot, one-shot, and optimized
one-shot) in a single-agent workflow. Main Answer. EMSE tasks
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significantly distinguish the performance of LLMs: ChatGPT4.0 and
ChatGLM4.0 achieve the highest performance with no hallucina-
tions, while ERNIE Bot4.0 and Gemini3.0 both exhibit hallucinations
with lower performance.

RQ2. Can multi-agent workflow improve the performance of LLMs
in empirical software engineering tasks? To fully leverage LLMs’ abil-
ity, the multi-agent workflow is a promising approach to achieve
automated LLM utilization in real-world applications [7]. Therefore,
this RQ simulates the human participation process in conducting
EMSE tasks by creating three agents with different roles to per-
form the evaluated tasks using ChatGPT3.5/4.0 and ChatGLM4.0.
Main Answer. The multi-agent workflow can indeed improves the
performance of LLMs.

In this paper, we make the following contributions:

e Benchmark. We propose EMSEBENCH!, the first benchmark
using EMSE tasks for evaluating LLMs.

e Analysis. We comprehensively evaluate LLMs on EMSEBENCH,

analyzing different factors impacting the performance of
LLMs and their limitations.

e Findings. We summarize six findings from our exploratory
study, which can facilitate the evaluation of LLMs.

2 DATA COLLECTION AND EXPERIMENT
SETUP

2.1 Data Collection

Identifying Keywords for Human Participation Scenarios.
Based on our research experience, we first carefully review human
participation scenarios collected from specific papers with “Empiri-
cal Study” in the title from the top three SE venues, i.e., ICSE, FSE,
and ASE, from the past three years 2021 to 2023. Intuitively, the
word “manual” is chosen as one candidate of the keyword list. After
reading a few papers, terms such as “label”, “analyze”, and “filter”
are added to the list. However, after identifying a sufficient number
of human participation scenarios, we find that the aforementioned
verb-based keywords are not effective as they represent actions
that could be performed either manually or automatically by code
or tools, making them neutral terms. After discussion, we decided
to retain only “manual” as the final keyword.

Requirements for LLM-Reproducible Human Participa-
tion Scenarios. The experimental process described in the paper
must be detailed enough, and the authors must provide specific
steps or guidelines to ensure we have sufficient information to re-
produce the experiments using LLMs. We think the following four
types of scenarios cannot be performed by LLMs.

e Type 1. The authors only describe what they did (what)
rather than how they did it (how).

e Type 2. The authors introduce the experimental process
through examples (for example) without sufficient details.

e Type 3. The experiment is mentioned only to illustrate the
advantages of automation (automated) without details.

o Type 4. The experimental process is well-detailed but deemed
unreplicable by LLMs (e.g., using tools unavailable to LLMs
or requiring a questionnaire involving multiple participants).

'EMSEBENCH: https://github.com/EMSEBench.
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Figure 1: Human-involved scenario classification process.

Classification of Scenarios. The specific classification pro-
cess is illustrated in Fig. 1. Based on the determined keyword and
reproducibility requirements, the classification steps for marking
scenarios are as follows: Step 1. We search for the keyword “man-
ual” (including “manually”) in the papers published in the top three
SE venues (ICSE, FSE, and ASE) from 2021 to 2023. Content where
the authors explicitly indicate manual participation will be recorded.
Step 2. For paragraphs identified by the keyword “manual”, deter-
mine if the manual participation parts provide detailed information
for reproduction by LLMs. Step 3. If a manual participation experi-
ment meets our requirements, we will search for the corresponding
original data and experimental results. Only those providing both
process and data will be recorded. Step 4. Finally, we check whether
the manual participation scenario can be performed by LLMs.

We classify the scenarios as follows:

o LLM-Reproducible. The paper includes at least one hu-
man participation experiment that meets our reproducibility
requirements and provides related data.

e No Participation. The paper does not mention human par-
ticipation, typically evidenced by the absence of the keyword
“manual” or mentions of it without relevant content.

e No Details. The paper mentions human participation but
does not provide sufficient detailed information.

e No Dataset. The paper mentions human participation and
meets our reproducibility requirements but does not provide
the corresponding experimental data.

o LLM-Unreproducible. The paper mentions human partic-
ipation, but the process does not meet our reproducibility
requirements. For example, requiring external tools to man-
ually perform the experiments.

Labeling a scenario as “LLM-Unreproducible” is straightforward
and less prone to error. Thus, the first round of screening, labeling
“No Participation” and “No Dataset” is completed by one author. For
the remaining categories, the second round of screening is jointly
conducted by two authors, ensuring a scenario is marked “LLM-
Reproducible” only if both agree. For other categories, the final
result is based on a discussion to make a consensus.

Dataset Construction Results. After classification, we have
collected seven target scenarios, along with their corresponding
datasets for experiments. Details of the seven scenarios are shown
in Table 1. The data type is mainly natural language. For exam-
ple, Stack Overflow (SO) or GitHub post content, GitHub commit
messages, and live-chat transcripts. If the data content exceeds
the token limit for a single transmission in LLMs (ChatGLM4.0),
we truncate texts to the token limit to ensure consistency in our
experiments, which may increase the difficulty of the task for LLMs.


https://github.com/EMSEBench

An Exploratory Evaluation of Large Language Models Using Empirical Software Engineering Tasks

Table 1: Details of Experimental Scenarios

No. Data Type Data Source Data Length Experiment Content

1 Natural Language SO/Gitub Issue Tong Deployment Fault Classification (5]

2 | Programming Language |  Software System Log Medium | Log Message and Location Type Classification [17]
3 Natural Language GitHub Issue Long 10T Bug Classification [22]

4 Natural Language | Community Live-chat Log Short Live-chat Log Classification [26]

5 Natural Language SO Issue Post Title Short Post Title Classification [15]

6 Natural Language GitHub Commit Message | Medium Commit Message Classification [16]

7 Natural Language TensorFlow.js Issue Long JavaScript Fault Classification [24]

) You

Suppose you are a software development engineer.In community-based software
development, you need to rely on live-chatting transcripts to discuss emergent
bugs/errors you encounter in your daily development tasks.

Now you need to classify the sentences | provide you into:observed behaviors (OB),
expected behaviors (EB), steps to reproduce the bug (SR) and others.

tips: "_code_" means code snippet, "_eou_" means the end of a sentence and
"_version_" means the version number of a app.

Just give your answer, no explanation required.
If you understand everything | said, please answer Understand.Then | would send
the content of live-chatting transcripts.

Figure 2: Example of zero-shot prompt.

2.2 Experiment Setup

Selection of LLMs Under Test. In this study, we refer to the April
2024 SuperCLUE [34], a Chinese LLM ranking, for selecting LLMs.
To ensure significant differences in experimental results, we select
LLMs with non-adjacent rankings. Considering scores and popu-
larity, we choose ChatGPT4.0 [23] (ranked high) and Gemini3.0 [9]
(ranked low), and ERNIE Bot4.0 [3] and ChatGLM4.0 [36] from
China (ranked between ChatGPT4.0 and Gemini3.0).

Random Sampling of Test Samples. To ensure the repro-
ducibility and randomness of experimental results, we use a fixed
random seed for data sampling. Specifically, during data processing,
we initialize a random number generator and set a fixed random
seed, making the data sampling process deterministic and ensuring
comparisons across different experiments are based on the same ran-
dom sampling. For the data corresponding to the collected human
participation scenarios, we randomly generate about 10 experimen-
tal data samples per scenario. According to the categories given in
the original paper, we extract the corresponding number of data
samples as experimental samples (one sample per category) and
provide them to LLMs in one-shot and optimized one-shot prompts.

Prompt Design. For each scenario, we need to design a prompt
related to the experimental content of the original paper to ensure
that our experiments align with the original experimental content.
Prompts are divided into three folds: zero-shot, one-shot, and opti-
mized one-shot prompts, following the thumb of rules in prompt
engineering [6, 14]. To facilitate understanding, we chose scenario
4 in Table 1 as an example to illustrate our prompt design in a
single-agent experimental environment.

Fig. 2 shows an example of a zero-shot prompt for scenario
4 in Table 1. The first paragraph sets the LLM’s role (software
development engineer) and explains the task background (solving
daily development issues based on chat records). The second and
third paragraphs clarify the task content (classifying chat records)
and provide specific meanings for labels (i.e., OB, EB, and SR),
ensuring the validity of the replication experiment. The fourth
paragraph specifies the output format, instructing the LLM to reply
with only the label results without additional explanations. The fifth
paragraph specifies the response method as replying “Understand”
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You

Suppose you are a software development engineer.In community-based software
development, you need to rely on live-chatting transcripts to discuss emergent
bugs/errors you encounter in your daily development tasks.

Now you need to classify the sentences | provide you into:observed behaviors (OB),
expected behaviors (EB), steps to reproduce the bug (SR) and others.

To help you understand these four categories, | will provide you with an example of
each category.

There are examples.

"i have added all the required jars in my eclipse project but still i am getting this
error. _eou_" observed behaviors (OB)

"when trying to edit or save desired capabilities, eou_" expected behaviors (EB)

"i have jdk version _version_ _eou_" steps to reproduce the bug (SR)

"hi have a problem with ios 13 device. _eou_" Others

tips: "_code_" means code snippet, "_eou_" means the end of a sentence and
"_version_" means the version number of a app.

Just give your answer, no explanation required.
If you understand everything | said, please answer Understand.Then | would send
the content of live-chatting transcripts.

Figure 3: Example of one-shot prompt.

You

Suppose you are an expert in the field of large language model (LLM) prompt
engineering. Now you are required to help a software development engineer
optimize his prompt words so that the large language model can better understand
his needs.

=N
&

His prompt words are as follows.The content of the prompt word is enclosed in
brackets:

(Suppose you are a software development engineer.In community-based software
development, you need to rely on live-chatting transcripts to discuss emergent
bugs/errors you encounter in your daily development tasks.

Now you need to classify the sentences | provide you into:observed behaviors (OB),
expected behaviors (EB), steps to reproduce the bug (SR) and others.

To help you understand these four categories, | will provide you with an example of
each category.

There are examples.

"i have added all the required jars in my eclipse project but still i am getting this
error. _eou_" observed behaviors (OB)

"when trying to edit or save desired capabilities, _eou_" expected behaviors (EB)

"i have jdk version _version_ _eou_" steps to reproduce the bug (SR)

"hi have a problem with ios 13 device. _eou_" Others

tips: "_code_" means code snippet, "_eou_" means the end of a sentence and
"_version_" means the version number of a app.

Just give your answer, no explanation required.
If you understand everything | said, please answer Understand.Then | would send
the content of live-chatting transcripts.)

Figure 4: Example of prompt optimization process.

to prevent unnecessary sentences. Since this is a zero-shot prompt
example, no sample example is provided.

Compared to the zero-shot prompt example, the one-shot prompt
example, as depicted in Fig. 3, adds one sample for each category
(highlighted in red boxes) and reminds the LLM with the phrase
“There are examples.” The one-shot prompt is expected to perform
better than the zero-shot prompt because less effort in prompt craft-
ing typically means less effort from the LLM. Moreover, to compare
the prompt optimization by the LLM itself, we design another type
of one-shot prompt, i.e., the optimized one-shot prompt. The opti-
mization process for the one-shot prompt is presented in Fig. 4. To
successfully optimize the one-shot prompt, we set the LLM’s role
as a prompt engineering expert and clearly separate the prompt to
be optimized using delimiters (i.e., brackets), preventing the LLM
from confusing the two parts (highlighted in red boxes in Fig. 4).

Fig. 5 illustrates an example of the optimized one-shot prompt
for scenario 4. The optimized prompt is more structured, with all
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:|Classify Sentences from Software Development Live-Chat Transcripts

As a software development engineer, you often rely on live-chat transcripts to
discuss and troubleshoot emergent bugs and errors encountered during your
development tasks. Your task is to classify the provided sentences from these
transcripts into four distinct categories: Observed Behaviors (OB), Expected
Behaviors (EB), Steps to Reproduce the Bug (SR), and Other.

Observed Behaviors (OB): Classify sentences that describe actual behaviors or errors
experienced. For example: "I have added all the required jars in my Eclipse project
but still | am getting this error. eou”

Expected Behaviors (EB): Classify sentences that describe the expected or intended
behaviors of the software. For example: "When trying to edit or save desired
capabilities, eou”

Steps to Reproduce the Bug (SR): Classify sentences detailing specific steps or
conditions needed to replicate the bug. For example: "I have JDK version version
eou"

Other: Classify sentences that do not fit into the above categories or are general
queries. For example: "Hi, | have a problem with iOS 13 device. eou"

Not
"code" represents a code snippet.

"eou" denotes the end of a sentence.
"version" indicates a software version number.

Response Format:

Simply classify each sentence without the need for an explanation.

If you understand the instructions, please reply with "Understand”. Upon
confirmation, | will send you the content of the live-chatting transcripts.

Figure 5: Example of optimized One-shot prompt.

Original

Scenario Reproducing Scenario.pdf

Experiment
Content Getting

Tested Sample
Choosing

| J

Provided Sample
Choosing

l

Prompt.txt

! Prompt Designing

LLM Experiment

Role Identifying  ——» Evaluation.xlsx

Figure 6: Single-agent evaluation process.

components highlighted as subheadings (such as Task). In prac-
tice, optimized one-shot prompts from LLMs often lose the original
category meanings or sample examples. Besides, specific response
format requirements for the LLM may also be lost. If these criti-
cal components are missing, the replication experiment may not
proceed. In this case, we adjust the optimized one-shot prompts.

3 RQ1: PERFORMANCE OF LLMS ON
EMSEBENCH

3.1 Evaluation Process

Fig. 6 shows the evaluation process of the single-agent experiment.
First, for the scenarios to be tested, we review the correspond-
ing paper to clarify the original experimental content and process,
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transforming it into our prompt’s “Task” and “Content” sections.
For the “Role” section, we extract the purpose from the context of
the human-involved experiment part of the original paper and ask
the LLM to suggest a reasonable role based on this information.
The “Specified Response” section is determined by our output re-
quirements. At this point, the zero-shot prompt design is complete.

Next, using the designed random number generator, we extract
the corresponding number of data samples from the dataset based
on the category count of the original scenario experiments and add
them to the one-shot prompt. Note that in our default evaluation
process, all content of the prompt is sent in the first message. How-
ever, if the sample length (actually the length of the data) is too long
to be sent in a single transmission (exceeding the LLM’s token limit),
we send the one-shot prompt in multiple transmissions. In the first
transmission, the content is similar to the zero-shot prompt, but
with an additional instruction in the “Specified Response” section,
such as, “To deepen your understanding of the category meanings,
we provide a sample for each category. Please reply ‘Understand’ to
indicate you understand my request.” This “Understand” response
specification prevents the LLM from misunderstanding the prompt
and replying with unnecessary content. If multiple transmissions
are needed to send the samples, we use the same method to main-
tain coherence between the prompts, avoiding unexpected replies.
After all samples are sent, we modify the “Specified Response” sec-
tion to notify the LLM to start the classification experiment. At this
point, the one-shot prompt design is complete.

Finally, we provide the designed one-shot prompt to the LLM
(whose role is preset as an “expert in the field of large language
model prompt engineering”), and obtained the optimized one-shot
prompt (this process is called the “optimization process”). If the
one-shot prompt content exceeds the LLM’s token limit and is
sent in multiple transmissions, the optimized one-shot prompt
would also follow the same transmission process. The optimized
one-shot prompt must maintain the same experimental content
as the original experiment, with no changes in the description of
categories. If the optimized one-shot prompt removes the specific
descriptions of the categories (leaving only the category names) or
modifies the content, we will not accept the optimized result. We
will modify the prompts in the “optimization process” instructing
the LLM to retain the original experimental content and optimize
again until the optimized one-shot meets our expected results. At
this point, the optimized one-shot prompt design is complete.

It should be noted that each scenario’s replication experiment
should involve at least four sessions with the LLM, corresponding to
“zero-shot prompt experiment”, “one-shot prompt experiment”, “op-
timization process”, and “optimized one-shot prompt experiment”.
This means that the replication experiment process for the three
types of prompts and the one-shot prompt optimization process
are independent, with one session in the browser for each process,
ensuring the independence of the replication experiments. Mixing
these four processes in one session would result in an increasingly
rich context for later prompts, which is unfair to other prompts.
Additionally, if necessary, a fifth session (actually the first in order)
can be added to provide the experimental content to the LLM and
ask it for a suitable role for the scenario (used in the “Role” section
of the prompts). However, in most cases, defining the LLM’s role as
“software developer” or “an expert in the field of..” is well sufficient.
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Figure 7: Comparison of LLMs on EMSEBENCH in single-agent workflow.

3.2 Results Analysis

3.2.1 Performance of LLMs on EMSEBENCcH in Single-agent Work-
flow. We first present the replication experiment results of the
seven scenarios in the form of bar charts, as shown in Fig. 7. Since
the main tasks of these seven scenarios are classification tasks,
“#Successful Test Cases” implies that the number of classification
results given by the LLMs that match the original paper’s results.

Scenario 1. Classification of Deployment Faults [5]. The experi-
ment involves reading SO/GitHub post content and classifying deep
learning mobile application deployment faults. The original paper
provides specific classification methods down to subcategories, but
due to insufficient detail, we use the results of major categories as a
reference. The experimental data is long natural language post con-
tent, requiring truncation when sending one-shot and optimized
one-shot prompts. The number of samples evaluated is nine. From
Fig. 7a, ChatGPT4.0 performs the best, followed by ERNIE Bot4.0
and ChatGLM4.0, all three LLMs with accuracy over 50%. Gem-
ini3.0 performs the worst and does not reach 50% accuracy. ERNIE
Bot4.0 exhibits hallucinations using the optimized one-shot prompt,
providing non-existent categories.

Scenario 2. Classification of Log Information [17]. The exper-
imental data are log statements in code snippets, with medium-
length code. The task is to extract log messages and classify them
by type. The original paper classifies both message type and loca-
tion type, so we considered results matching both types as correct.
The number of samples is 15, with ChatGLM4.0 achieving the high-
est accuracy, close to 50%, followed by ChatGPT4.0, Gemini3.0,
and ERNIE Bot4.0. ENRIE Bot4.0 exhibits hallucinations again in
zero-shot and optimized one-shot prompts, resulting in very low ac-
curacy. For example, the expected message type is ND for the tested
log statement (Fig. 8a), but ERNIE Bot4.0 provides a non-existing
type, i.e., EL (Fig. 8b). By contrast, most samples are mistakenly
classified by Gemini3.0, leading to low performance. Notably, Gem-
ini3.0 provides additional explanations despite the prompt clearly

) You
} catch (Exception ex) {
LOG.info("Could not properly shutdown cluster client.”, ex);

)

ChatGPT
Message: "Could not properly shutdown cluster client."

MsgType: ND
LocationType: CT
(a) Expected response provided by ChatGPT4.0.

Message: Could not properly shutdown cluster client.
MsgType: Error Log (EL)

LocationType: Catch Clause (CT)

Explanation:
Although the log level used here is info , the context of the message suggests that an exceptional
situation has occurred, which is the failure to properly shutdown a cluster client. Typically, such failures are
unexpected and may require attention, making it more suitable for an error log level rather than an
informational one. The logged message indicates that there was a problem during the shutdown process

of the cluster client, and the exception ex provides further details about the nature of the failure.

(b) Hallucination provided by ERNIE Bot4.0.

Figure 8: Example of expected response and hallucination.
stating “No additional explanation is needed” unlike ChatGPT4.0
and ChatGLM4.0, which adhere to the prompt requirements.
Scenario 3. Classification of IoT Bugs [22]. The experimental
data are issue content, similar to Scenario 1, involving reading
GitHub issue content and classifying IoT bug types. The number
of samples is 10 in this scenario. ChatGPT4.0 and ChatGLM4.0
have similar accuracy, around 70%, with ERNIE Bot4.0 next, and
Gemini3.0 performing the worst. Gemini3.0 exhibits hallucinations
in all prompt experiments, leading to very low overall accuracy.
Scenario 4. Classification of Live-chat Transcripts [26]. The ex-
perimental data are short sentences of chat records, related to devel-
opment issues and errors, classified by specific content. The number
of samples is 10, with ChatGPT4.0, ERNIE Bot4.0, and ChatGLM4.0
performing well, while Gemini3.0 performing moderately. Both
ERNIE Bot4.0 and Gemini3.0 exhibit hallucinations, particularly
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Gemini3.0 has numerous hallucinations in the zero-shot prompt
experiment. Additionally, Gemini3.0 provides unnecessary expla-
nations in responses again.

Scenario 5. Classification of Post Titles [15]. The experimental
data are short post titles. The task is to classify SO post titles into
three types: conceptual questions, how-to questions, and bug-fixing
questions. The number of samples is 10. During the evaluation, both
ERNIE Bot4.0 and Gemini3.0 exhibit hallucinations, but these are
understandable and acceptable. Some titles are in question form
(interrogative sentences), and without additional hints, LLMs might
assume the user changed the query content, leading to unexpected
answers. We provide delimiters, e.g., “The question of SO post is
as follows. Remember your task is to categorize the question”, to
clarify the experimental data and ensure the LLM knows its tasks.
However, even with delimiters, ERNIE Bot4.0 and Gemini3.0 still
exhibit hallucinations. We find that ChatGPT4.0 with 100% accu-
racy, followed by ChatGLM4.0 with about 80%. Gemini3.0 performs
comparably to ChatGLM4.0 after providing additional prompts, but
ERNIE Bot4.0 still has many errors.

Scenario 6. Classification of Commit Messages [16]. The experi-
mental data are medium-length commit messages. The task is to
classify whether the commit messages contained “Why” and “What”
content. Special cases require the LLM to read post content in <link>
tags, making the experiment more complex. The number of samples
is 10, with ChatGPT4.0, ERNIE Bot4.0, and ChatGLM4.0 perform-
ing well. ERNIE Bot4.0 exhibits hallucinations that do not affect
the experiment, with correct types but incorrect labels. Gemini3.0
exhibits the same errors as ERNIE Bot4.0 and misinterprets URL
information, thinking it needs to access websites, leading to errors.

Scenario 7. Classification of JavaScript-based DL Faults [24]. The
data are long post content divided into title, body, and comments by
the original authors. The task is to classify fault types in JavaScript-
based TensorFlow projects. The number of samples is 10, with
ChatGPT4.0, ERNIE Bot4.0, and ChatGLM4.0 performing similarly,
with about 50% accuracy. Gemini3.0 could not experiment due to
URL information in the post content (despite the experiment not
requiring website access).

Overall, ChatGPT4.0 and ChatGLM4.0 have the highest replica-
tion accuracy at about 62% (139/222, 138/222), with no hallucina-
tions. ERNIE Bot4.0 follows, with frequent hallucinations leading
to 50% (111/222) accuracy. Gemini3.0 had the lowest performance,
with hallucinations and URL misinterpretations, at 35.1% (78/222).

Finding #1: In EMSE tasks, ChatGPT4.0 and ChatGLM4.0
have the highest performance with no hallucinations during
replication experiments. ERNIE Bot4.0 frequently exhibits hal-
lucinations, leading to lower accuracy than ChatGPT4.0 and
ChatGLM4.0. Gemini3.0 exhibits both hallucinations and mis-
interpretations, with the lowest replication accuracy.

3.2.2  Performance of LLMs with Different Prompts. To evaluate
the performance of different prompts in single-agent workflow,
we record the highest accuracy LLM/prompt combination for each
scenario, as shown in Table 2. For example, in Scenario 1, if the
combination (ChatGPT4.0/optimized one-shot) achieves the highest
accuracy, the count for this combination is increased by one. The
initial value of all counts is zero. Through “Total” in the last row,

Wenjun Liang and Guanping Xiao

Table 2: Statistics of the Combination of Prompt Types and
LLMs with the Highest Reproduction Accuracy

LLM/Prompt | Zero-shot One-shot _Optimized One-shot _Total
ChatGPT4.0 2 3 7
ERNIE Bot4.0 3
Gemini3.0 0
ChatGLM4.0 1 3
Total 4 13
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Figure 9: Multi-agent evaluation process.

Obtain Final
Result

we can rank the performance of the three prompt types. This table
also verifies Finding #1. Notably, in Scenarios 5 and 6 (see Fig. 7e
and Fig. 7f), some LLMs (e.g., ChatGPT4.0) achieve the best and
consistent accuracy with all three prompts, thus these combinations
are counted multiple times, with the final total summing to 13.

It is worth mentioning that the optimization process does not al-
ways yield the expected results. The “Role” and “Specified Response”
sections in one-shot prompts can affect the LLM’s optimization abil-
ity. In some cases, we temporarily remove content not related to
the original experiment, optimize the remaining parts, and then
supplement the removed content. This means the use of optimized
one-shot prompts currently relies on human intervention, and their
practical significance remains to be further explored.

Finding #2: In EMSE tasks, zero-shot prompts have the
highest performance, followed by one-shot and optimized
one-shot prompts.

4 RQ2: IMPACT OF MUTI-AGENT WORKFLOW
OF LLMS ON EMSEBENCH

4.1 Evaluation Process

Fig. 9 shows the multi-agent workflow process. Given the unique
nature of our experimental data, we initialize the multi-agent work-
flow as a software engineering group, RaiseGroup. The group con-
sists of two team members with the role of software development
engineer) and a team leader with the role of quality assurance (QA)
engineer. The two members are on equal footing and independently
solve the same problem (initiating two separate browser sessions
with the LLM) to obtain their results. The decision-making process
for the team members’ results is as follows:

e If the replication results of both team members (the results of
the problem in our experiments) are the same, regardless of
whether the result is correct or not, it will be taken as the final
classification result without being sent to the team leader.
This is based on the rationale that, in real-world research,
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You

The RaiseGroup team consists of two software development engineers (team
members) and one Quality Assurance (QA) engineer (team leader). You are one of
the software development engineers, and you frequently solve your programming
needs by reading posts on StackOverflow (SO). While manually reviewing SO posts,
you noticed a correlation between the questions and the answers in the posts. For
research purposes, your main task now is to categorize the questions in the
provided SO posts into the following three categories:

1. conceptual questions: asking for clarifications on a concept.

2. how-to questions: asking for instructions for achieving a task.

3. bug fixing questions: asking for solutions to fix some issues.

Answer Types 1, 2, or 3, and provide your reasons.

Please note that the other team member will perform the same task independently,
and both of your answers and reasons will be submitted to the team leader. If your
answers differ from those of the other team member, the team leader will evaluate
both sets of answers and reasons, and select the most reasonable one as the final
result. This final decision will be communicated to the team member whose answer
differs, who may then either modify their answer or choose to keep it.

If you understand your role and assignment, please reply with "Understand." After
that, you can begin your work.

(a) Team member initial setting.

{) You
Your answer differed from that of another team member. After the team leader
analyzed the answers and reasons of the two team members, the team leader
believed that the other team member's answer was more reasonable, and the team
leader gave his reasons.
The reasons for the team leader are as follows (you are team member 1, and
another team member is team member 2):

(b) Feedback to team member (only in feedback mode).

Figure 10: Example of multi-agent member prompt.

the team leader’s role is to make decisions only when there
is a disagreement among team members.

If the replication results differ, we handle it in two ways. The
first method, the no-feedback approach, involves sending
both team members’ results and their reasoning to the team
leader (initiating a third session within the experiment). The
team leader selects the most reasonable result as the final
outcome and provides reasoning. The second method, the
feedback approach, extends the first method by also sending
the team leader’s final result and reasoning back to the mem-
ber whose result was not chosen. The member can then de-
cide whether to update his result to match the team leader’s
or retain his original result with further justification. How-
ever, following the principle of majority rule, this decision
does not affect the final outcome. We design both methods to
investigate whether feedback from the team leader improves
the accuracy of team members’ future classifications.

With the multi-agent workflow established, our prompts also
need to be adapted accordingly. We keep the original content of
the prompts unchanged, maintaining their internal structure. We
add a description of RaiseGroup at the beginning of all prompts
to introduce the concept of the group to the LLM (making each
role aware of each other’s existence) and provide task descriptions
based on the LLM’s role (team member or team leader), as shown in
Fig. 10a and Fig. 11a. At the end of all prompts, we include feedback
instructions based on the LLM’s role. Team members are informed
that if there is a disagreement, both classification results will be
sent to the team leader for judgment (Fig. 10a). The team leader
is informed that the team members are working on the same task
and that any conflicting results will be resolved by it (Fig. 11b). If
the feedback mode is active, the team leader’s final result will be
sent back to the team member (see the text with red underline in
Fig. 10a), who will then decide whether to update its result (Fig. 10b).
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O You

o The RaiseGroup team consists of two software development engineers (team
members) and one Quality Assurance (QA) engineer (team leader). You are the QA
engineer (team leader). Currently, the team members are tasked with categorizing
the questions in the given StackOverflow (SO) posts into three categories:
1. conceptual questions: asking for clarifications on a concept.
2. how-to questions: asking for instructions for achieving a task.
3. bug fixing questions: asking for solutions to fix some issues.
Their answers will be provided in the form of category along with reasons.

Please note that both team members are performing the same task independently,
and their answers and reasons will be submitted to you. If both team members
provide the same answer, then that answer becomes the final result. If their answers
differ, you need to evaluate the answers and reasons from both members and
choose the most reasonable one as the final outcome. This result will then be
communicated to the team member whose answer differs from the chosen one,
who may either change their answer or continue to maintain it.

If you understand your role and assignment, please reply with "Understand.” After
that, you can begin your work.

(a) Team leader initial setting.

) You

The two team members disagreed on the classification of the following
title(separated by ## symbols):
#How to create a generic array in Java?#

Team member 1 thinks:

This question belongs to the category of how-to questions. The title "How to create
a generic array in Java?" explicitly requests instructions or a method for
accomplishing a specific programming task in Java—creating a generic array. This
indicates that the user is looking for a step-by-step guide or explanation on how to
implement this in their code, typical of how-to queries.

Team member 2 thinks:

This question belongs to the conceptual category. While it appears to be asking
"how to" do something, the underlying challenge—creating a generic array in Java
—involves understanding Java's type system and the limitations imposed on
generics due to type erasure. Therefore, the question is likely to involve
explanations on why Java does not allow the creation of generic arrays directly and
what conceptual workarounds can be used instead. This requires clarifications on a
concept rather than straightforward procedural instructions.

Please choose the one you think is the most reasonable based on the reasons given
by the two team members as the final answer.

(b) Disagreement resolution prompt of team leader.

Figure 11: Example of multi-agent leader prompt.

Since our goal is to explore whether the multi-agent workflow
improves LLM performance, the type of prompt is not a considera-
tion. We only use the best-performing zero-shot prompt (Finding
#2) in the multi-agent experiments and reference the zero-shot
prompt results from the single-agent experiments.

Besides, due to the frequent occurrence of hallucinations with
ERNIE Bot4.0 and Gemini3.0 in single-agent experiments, which
prevent the tests from proceeding, we decide to only use Chat-
GPT4.0 and ChatGLM4.0 for the multi-agent experiments. For com-
parison, we only reference the single-agent experiment results of
ChatGPT4.0 and ChatGLM4.0. We add content delimiters (e.g., “#”)
when sending test samples to ensure the experiments ran smoothly.

4.2 Results Analysis

4.2.1 Comparison of Performance Between Single-agent and Multi-
agent Workflows. We first compare the performance of single-agent
and multi-agent workflows across seven scenarios, with the multi-
agent workflow divided into no-feedback and feedback modes.

As shown in Fig. 12, considering the two modes in the multi-
agent workflow, except for a significant performance difference
in Scenarios 1 and 6 with ChatGLM4.0 between no-feedback and
feedback modes, the performance is generally consistent across
other scenarios, with a discrepancy of about one successful repli-
cation. Therefore, we calculate the average of the results from the
two modes as the final result for the multi-agent workflow.
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Figure 12: Comparison of LLMs on EMSEBENCH in multi-agent workflow.

Table 3: Comparison of ChatGPT4.0’s Performance Between
Single-agent and Multi-agent Workflows

[ [ Scenariol Scenario2 Scenario3 Scenariod Scenario5 Scenario6 Scenario? |
Single-agent 6 4 6 B 10 7 5
Multi-agent 7 7.5 7 6 9 7 7.5

Table 4: Comparison of ChatGLM4.0’s Performance Between
Single-agent and Multi-agent Workflows

[ [ Scenariol Scenario2 Scenario3 Scenario4 Scenario5 Scenario6 Scenario7 |
5 6 8 8 9 6 8
5 65 85 75 9 5 6

Single-agent
Multi-agent

First, we analyze the results of ChatGPT4.0, as shown in Table 3.
In Scenarios 1, 2, 3, and 7, the multi-agent workflow performs better,
whereas in Scenarios 4 and 5, the single-agent workflow is superior.
The performance is the same in Scenario 6. Overall, the single-
agent workflow has a replication accuracy of 62.2% (46/74), while
the multi-agent workflow achieves 68.9% (51/74).

For ChatGLM4.0, the results are shown in Table 4. Unlike Chat-
GPT4.0, the performance is the same in Scenarios 1, 4, and 5, slightly
better in the multi-agent workflow for Scenarios 2 and 4, but worse
in the remaining scenarios. Overall, the single-agent workflow has
a replication accuracy of 67.6% (50/74), while the multi-agent work-
flow achieves 64.2% (47.5/74).

Combining the results for both LLMs, the single-agent workflow
has a replication accuracy of 64.9% (48/74), while the multi-agent
workflow has 66.6% (49.25/74).

Finding #3: In EMSE tasks, the multi-agent workflow per-
forms better than the single-agent workflow for ChatGPT4.0
but worse for ChatGLM4.0. Overall, the multi-agent workflow
has higher performance than the single-agent workflow.

4.2.2  Relationship Between LLM Consistency and Error-Correction
Ability. We observe that the “team leader decision” step in the multi-
agent workflow can be seen as a “reflection” mode, leveraging the
LLM’s error-correction ability through discussions between two
agents (two sessions of the same LLM). This mode significantly
improves application results in some cases. We evaluate the LLM’s
self-correction ability by tracking the accuracy of the “team leader”

Table 5: The Correctness/Wrongness of the Team Leader’s
Final Result

[ [ Scenariol Scenario2 Scenario3 Scenario4 Scenario5 Scenario6 Scenario? |
ChatGPT4.0 | 0/0 7 172 073 172 0/1 310
ChatGLM4.0 2/4 2/1 1/0 2/1 0/1 0/2 1/2

judgments in the multi-agent workflow, as shown in Table 5. For
example, in Scenario 2 with ChatGPT 4.0, “1/1” indicates that there
are two cases requiring the team leader’s judgment in the feedback
modes, with one correct and one incorrect decision.

Note that when both “team members” give incorrect but different
results, the “team leader” choosing one of these incorrect results
(rather than a new correct one) is also considered an incorrect
judgment. While we only require the team leader to choose the
most reasonable result, we observe cases where the team leader
provided a new correct result, which we consider an indication of
the LLM’s correction ability.

Table 5 shows that ChatGPT4.0 has 6 correct and 9 incorrect
judgments, with a correction rate of 40% (6/15). ChatGLM4.0 has 8
correct and 11 incorrect judgments, with a correction rate of 42.1%
(8/19). While ChatGPT4.0 performed better overall in the multi-
agent workflow, its correction ability is inferior to ChatGLM4.0.
Given the number of team leader’s judgments, we infer: ChatGPT4.0
has higher consistency than ChatGLM4.0. With both having low
self-correction ability, we can conclude that the higher consistency
of LLMs leads to better performance.

Finding #4: In EMSE tasks, both ChatGPT4.0 and Chat-
GLM4.0 have low self-correction ability. ChatGLM4.0 per-
forms slightly better self-correction ability than ChatGPT4.0.
When LLM self-correction is insufficient in multi-agent work-
flow, higher consistency results in better performance.

4.2.3 Relationship Between LLM Consistency and Sycophancy. We
note an interesting phenomenon where both ChatGPT4.0 and Chat-
GLM4.0 “team members” accept the team leader’s final result and
update their original result, even though the team leader’s judgment
is often incorrect. This might indicate sycophancy in LLMs, where
LLMs unconditionally accept authority figures’ requirements [20].
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Table 6: Comparison of Inconsistency Between ChatGPT 4.0
and 3.5

[ [ Scenariol Scenario2 Scenario3 Scenario4 Scenario5 Scenario6 Scenario? |
ChatGPT4.0 0 2 3 3 3 1 3
ChatGPT3.5 5 5t 5 5 2 s 3

© ChatGPT
Considering the team leader's reasoning, | understand the perspective that the
commit message provides some insight into the motivation behind the commit
("Why"), even though it lacks specificity regarding the changes made ("What").

Therefore, labeling it as 3 ("No What") seems reasonable.

However, upon reevaluation,|I still believe|that the commit message doesn't

sufficiently explain the motivation behind the changes. While it mentions merging
dev-metadata from upstream and refactoring the zk store, it doesn't clarify why
these actions were necessary or what specific improvements or fixes were made.
Without this information, it's challenging to fully understand the purpose of the
commit.

Therefore, ‘I will maintain my original answer‘and label this commit message as 1
("Neither Why nor What").

Figure 13: Team member maintains answer in ChatGPT3.5.

We hypothesize that sycophancy might relate to LLM consistency,
causing the LLM to yield consistent results over multiple attempts.
We conduct supplementary experiments with ChatGPT3.5, as shown
in Table 6. For instance, in Scenario 2, “2” for ChatGPT4.0 indicates
that out of 20 experiments (10 samples, two feedback modes), there
are two instances of disagreement among the team members.

Table 6 shows that ChatGPT4.0 generally has higher consistency
than ChatGPT3.5, except in Scenario 5. During the ChatGPT3.5
experiments, in scenarios 2 and 6 (marked with “*”) team members
retain their opinions (non-sycophancy, see Fig. 13). While team
member opinion retention does not affect our final result in repli-
cation experiments, it could lower LLM performance in multi-level
feedback workflows. Hence, we believe sycophancy is more likely
in higher consistency LLMs, affecting performance. Future LLM
alignment training should carefully consider this issue.

Finding #5: In EMSE tasks, sycophancy may reduce LLM
performance in multi-level feedback workflows, likely appear-
ing in higher consistency LLMs. Reduced sycophancy may lead
to more reasonable results, thereby improving performance.

4.24 Comparison of Performance Between ChatGPT4.0 with Single-
agent and ChatGPT3.5 with Multi-agent Workflows. ChatGPT4.0
is the upgraded version of ChatGPT3.5, with numerous bench-
marks indicating superior performance [34]. To further validate the
improvement of multi-agent workflow on LLM performance, we
compare single-agent ChatGPT4.0 with multi-agent ChatGPT3.5.
Note that for single-agent ChatGPT4.0, we only consider zero-
shot prompt results. For multi-agent ChatGPT3.5, we average the
two workflow modes. As shown in Fig. 14, single-agent ChatGPT4.0
has a replication accuracy of 62.2% (46/74), while multi-agent Chat-
GPT3.5 has 60.1% (44.5/74). We conclude that multi-agent Chat-
GPT3.5 matches the performance of ChatGPT4.0, implying that
multi-agent workflow can indeed improve LLM performance.

Finding #6: In EMSE tasks, multi-agent workflows signifi-
cantly improve LLM performance. Multi-agent ChatGPT3.5
can achieve a similar performance to ChatGPT4.0.
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5 THREATS TO VALIDITY

Threats to Internal Validity. The main threats to internal validity
come from the data collection and experiment setup. We defined
rigorous criteria to filter papers to select human participation sce-
narios. Regarding replicating human participation scenarios by
LLMs, we strictly followed the definitions and descriptions pro-
vided by the selected papers to refine the prompts. Moreover, since
we used the web platforms to access and evaluate the LLMs, our
results are only valid when we conducted the evaluations.

Threats to External Validity. The main threat to external
validity lies in the generalization of our finding results. In our
exploratory study, we tested seven scenarios with limited samples
on four LLMs. This limited dataset may introduce bias into the
findings. To mitigate this threat, we plan to evaluate more scenarios
on more LLMs in future work.

Threats to Construct Validity. The threat to construct validity
relates to the metric used for evaluation. In our study, we calculated
the accuracy, the ratio of corrected responses to the total tested
samples, to evaluate LLMs.

6 RELATED WORK

LLM Evaluation Benchmarks. Over the past year, many LLM
evaluation benchmarks have been introduced, e.g., SciEval [29],
SciBench [30], JEEBench [1], AGIEval [37], C-Eval [12], and M3KE [18].
Huang et al. [12] proposed C-EVAL, the first comprehensive Chi-
nese evaluation suite designed to assess advanced knowledge and
reasoning abilities of foundational models in a Chinese context.
C-EVAL includes multiple-choice questions at four difficulty levels:
middle school, high school, college, and professional.

LLMs in SE. Recently, LLMs have been applied to many soft-
ware engineering tasks such as automated program repair [8, 10,
11, 13, 33, 35] and software testing [21, 25, 28]. To evaluate LLMs
in code understanding and generation, many code-related bench-
marks also have been introduced, e.g., HumanEval [4], MBPP [2],
HumanEval* [19], and EvoEval [32]. Compared to existing work,
our study presents the first evaluation of LLMs using human par-
ticipation scenarios in EMSE tasks.

7 CONCLUSION

In this paper, we conducted an exploratory investigation to com-
pare the performance of different LLMs using EMSEBENCH, human



Internetware 2024, July 24-26, 2024, Macau, Macao

participation tasks in EMSE. We used seven human participation
scenarios and related data to evaluate the performance of LLMs,
including ChatGPT4.0, ERNIE Bot4.0, Gemini3.0, and ChatGLM4.0
with three types of prompts, i.e., zero-shot, one-shot, and optimized
one-shot prompts. Besides, we analyzed multi-agent workflow tech-
nique to explore its actual improvement in LLM performance. We
believe this research can facilitate the understanding of the auxiliary
role and effectiveness of LLMs in EMSE research.
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