
Physica A 466 (2017) 249–258

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Evolution of Linux operating system network
Guanping Xiao, Zheng Zheng ∗, Haoqin Wang
School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, PR China

h i g h l i g h t s

• Networks of 62 major releases of Linux operating system are constructed.
• Manifestations of the evolution of network properties are observed.
• The evolution of functionality structures has revealed.
• Seven events are found in the evolution of functional modules.

a r t i c l e i n f o

Article history:
Received 15 June 2016
Received in revised form 23 August 2016
Available online 27 September 2016

Keywords:
Complex network
Linux operating system
Network evolution
Evolution events

a b s t r a c t

Linux operating system (LOS) is a sophisticated man-made system and one of the most
ubiquitous operating systems. However, there is little research on the structure and func-
tionality evolution of LOS from the prospective of networks. In this paper, we investigate
the evolution of the LOS network. 62 major releases of LOS ranging from versions 1.0 to
4.1 are modeled as directed networks in which functions are denoted by nodes and func-
tion calls are denoted by edges. It is found that the size of the LOS network grows almost
linearly, while clustering coefficient monotonically decays. The degree distributions are al-
most the same: the out-degree follows an exponential distribution while both in-degree
and undirected degree follow power-law distributions. We further explore the functional-
ity evolution of the LOS network. It is observed that the evolution of functional modules is
shown as a sequence of seven events (changes) succeeding each other, including continu-
ing, growth, contraction, birth, splitting, death andmerging events. Bymeans of a statistical
analysis of these events in the top 4 largest components (i.e., arch, drivers, fs and net), it is
shown that continuing, growth and contraction events occupy more than 95% events. Our
work exemplifies a better understanding and describing of the dynamics of LOS evolution.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world complex systems ranging from nature to human society can be abstracted as networks, where entities
are denoted by nodes and interactions between entities are denoted by edges [1–3]. At first, people used regular networks to
represent real systems. After that, ER random-graph model was proposed [4], in which the edges are completely randomly
connected. However, real-world networks are neither regular lattices nor simple random networks. Since the small-world
network model and the scale-free network model were put forward at the end of the last century [5,6], complex networks
science is flourishingly developed and greatly prompts the understanding of structures and functions of real-world complex
systems, such as protein networks [7–9], Internet [10–12], power grids [13–16], airport networks [17–20] and scientific
collaborations [21–23]. Over the past years, researchers primarily focus on several research aspects, involving epidemic

∗ Corresponding author.
E-mail address: zhengz@buaa.edu.cn (Z. Zheng).

http://dx.doi.org/10.1016/j.physa.2016.09.021
0378-4371/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2016.09.021
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2016.09.021&domain=pdf
mailto:zhengz@buaa.edu.cn
http://dx.doi.org/10.1016/j.physa.2016.09.021


250 G. Xiao et al. / Physica A 466 (2017) 249–258

spreading [24–27], cascading failures [28–30], traffic dynamics [31–33], evolutionary games [34–36], network control
[37,38], optimization process [39–42], coupling networks [43,44] etc. One interesting direction is to investigate structures
and functions of software system networks [45–47].

Software systems represent one of the most sophisticated man-made systems which can be modeled as networks [48].
Over the past decades, a wealth of researches have been concentrated on software system networks from several aspects.
Valverde et al. [49] presented the first evidence for the presence of scale-free and small-world behaviors in software systems
fromawell-defined local optimization. Cai et al. [50]modeled software dynamic execution processes as an evolving software
mirror graph and found that execution processes might illustrate as a small-world network in the topological sense but no
longer manifest in the temporal sense. Šubelj et al. [51] investigated the community structure in software networks. In the
work, observations on several networks constructed from Java and various third party libraries were presented.

Operating system is a special software system which interacts with hardware devices and provides execution
environments to the software executing on a computer [52]. Among various operating systems, Linux operating system
(LOS) is typical and well deployed in most fields of the society nowadays. Due to its open source characteristic [53], the
LOS network draws continuous attentions. In 2008, Zheng et al. [54] developed two new network growth models to better
represent Gentoo Linux. Recently, Gao et al. [55] analyzed the core component of LOS as a complex network and showed that
the large in-degree nodes providing basic services would do more damage on the whole system at the time of intentional
attacks. Wang et al. [56] studied the network of networks in LOS and different manifestations of the coupling correlations
among components were observed from the aspects of topologies and functions.

The functionality of LOS is continuously updated and optimized, brings it a strong vitality to adapt changing
environments. Since version 1.0 was released in 1994, more than 1300 releases including versions 1.0 to 4.11 have been
developed, and about every three months, a major version of LOS would be released. Understanding characteristics and
processes of LOS evolution aremeaningful to the development of operating systems, wherebywhatmetrics could be utilized
to evaluate changes of structures and functions of LOS during its evolution and how to reveal underlying principles of the
evolution of LOS comprehensively are necessary to be explored. However, the study of the LOS network from the evolution
aspect is still rare. To the best of our knowledge, the only work so far is that in 2011, Fortuna et al. [57] investigated packages
in the first 10 releases of Debian GNU/Linux operating system and found that themodularity of the network of dependencies
increased over time. In this paper, we systematically study the network evolution of 62 major releases of LOS ranging from
version 1.0 released in 1994 to version 4.1 released in 2015, from the aspects of topological properties and functionality
structures.

The paper is organized as follows. The following section describes the research data and the network modeling of LOS.
Afterwards, results of the evolution of the LOS network are presented and discussed. Finally, the conclusion is given.

2. Methods

2.1. Research data

LOS is originally developed by Linus Torvalds in 1991. Over the past 20 years, more than 1300 releases ranging from
versions 1.0 to 4.1 were put out, and the development of LOS has gone through three stages which can be classified by
development methods [58]. The first stage contains versions 1.0 to 2.5, the second stage includes versions 2.6 series and the
third stage contains version 3.0 and its subsequent releases. In the first stage, developers utilized 3 digits which labeled as
‘‘a.b.c’’ to represent the releases: the first digit ‘‘a’’ represents the LOS version, the second digit ‘‘b’’ denotes themajor revision
of LOS, and the third digit ‘‘c’’ indicates the minor revision of LOS. In this stage, a distinction was made between even and
odd second major revision digits: odd digits were used to represent development releases, whereas even digits correspond
to stable releases [59]. Differently, in the second stage, releases were not developed by dividing into development or stable
versions, and 4 digits were used to denote the releases as a result of the change of developmentmethods. Themajor revision
of LOS was denoted by the third digit while the minor revision of LOS was represented by the forth digit. In the third stage,
developers decided to stop the old numbering method which was utilized in versions 2.6, from which the numbering with
3 digits was reused to denote the releases. In this scheme, the development speed was accelerated by mainly separating the
releases into mainline versions, stable versions and longterm versions [60].

The research data of LOS are obtained from 62 releases provided by the official website2 of Linux ranging from versions
1.0 to 4.1, covering the three development stages of LOS, as exhibited in Fig. 1. According to the version numbering method
of LOS, all of these releases are major releases.

2.2. Network modeling

LOS is a C language based operating system whose realization mainly depends on the function calls, which can be
commonly termed as a call graph [48]. Consequently, a directed network based on the call graph where nodes are functions

1 The latest release when we started this work.
2 https://www.kernel.org/.

https://www.kernel.org/


G. Xiao et al. / Physica A 466 (2017) 249–258 251

Fig. 1. Research data. 62 major releases ranging from version 1.0 released in 1994 to version 4.1 released in 2015. Note, SN represents the sequential
number which is assigned to each version according to their release date, e.g., the sequence number of version 1.0 is 1 and that for version 4.1 is 62. The
symbol will be used and discussed in the remaining parts of the paper.

and edges are function calls is constructed. For instance, a piece of C language program modeled as a directed network is
illustrated in Fig. 2.

3. Results and discussion

3.1. Evolution of network properties

As shown in Fig. 3(a)(b), the size of the LOS network evolves almost linearly with the increasing of sequence numbers.
It can be observed that the numbers of nodes and edges in each version increase about 6800 and 26000, respectively. A
significant discrepancy can be easily obtained that the numbers of nodes n and edgesm in version 4.1 are about 118 and 131
times larger than version 1.0, respectively. It is noticeable that the growth rates of n and m are slower after the sequence
number 12 (version 2.6.11). This is due to the reason that, the interval between two major releases has become much
shorter since the releasing of version 2.6.11 as a consequence of the change of development methods [58]. In Fig. 3(c),
we plot clustering coefficient C with the increasing of sequence numbers. The clustering coefficient is utilized to describe
the probability that a specified node’s neighbors are also the neighbors of each other. In a directed network, the clustering
coefficient for a node i is defined as [61]

Ci =
1
2


j


k

(aij + aji)(aik + aki)(ajk + akj)

(kini + kouti )(kini + kouti − 1) − 2

j
aijaji

(1)

where kini and kouti are the in-degree and out-degree of node i, respectively. In Eq. (1), aij is set to be 1 if there exists an edge
from i to j, otherwise aij = 0. The clustering coefficient for thewhole network can be obtained by averaging Ci over all nodes.
Thus, the clustering coefficient of the whole network is

C =
1
n

n
i=1

Ci. (2)

From Fig. 3(c), it is obvious that C decays with the increasing of sequence numbers, indicating the local connection of
the LOS network will become looser with its evolution. Fig. 3(d) depicts the evolution of the average out-degree ⟨kout⟩, the
average in-degree ⟨kin⟩ and the average undirected degree ⟨k⟩ of the LOS network. It can be observed that the average degree
grows with the increasing of sequence numbers. It is worth mentioning that the growth rates of ⟨kout⟩, ⟨kin⟩ and ⟨k⟩ after
the sequence number 12 (version 2.6.11) are slower, due to the same reason as previously described the growth rates of n
and m in Fig. 3(a)(b). Besides, the correlations between average degrees and the number of nodes are depicted in Fig. 3(e).
It shows a positive power-law relation (i.e., ⟨k⟩ ∝ nλ(λ = 0.023)) between the average degree and the number of nodes.
Average degrees will increase more and more slowly with the growth of the number of nodes.



252 G. Xiao et al. / Physica A 466 (2017) 249–258

Fig. 2. An illustration for modeling a C language program as a directed network. (a) is an example of a C language program. The call graph depicted in (b)
can be regarded as a directed network. The out-degree of a specified node represents the number of functions it calls (e.g., the out-degree of nodemain is 5)
and the in-degree of a specified node represents the number of functions calling it (e.g., the in-degree of node func10 is 2).

Fig. 3. Evolution of topological properties of the LOS network. (a) The number of nodes n. (b) The number of edges m. (c) Clustering coefficient C .
(d) The average out-degree ⟨kout ⟩, the average in-degree ⟨kin⟩ and the average undirected degree ⟨k⟩, all presented as functions of the sequence number
(SN). (e) Correlation between the average degree and the number of nodes. (f) Out-degree distributions, (g) in-degree distributions and (h) undirected
degree distributions of versions 1.0 and 4.1 (using logarithmic binning).

Fig. 3(f), (g) and (h) display degree distributions of versions 1.0 and 4.1 with logarithmic binning. The degree distribution,
which defined the probability of a randomly selected node with degree k, is one of the most fundamental properties of
networks [2]. It can be notably observed from Fig. 3(f), (g) and (h) that the two versions have similar degree distributions:
the out-degree distribution follows an exponential distribution while both in-degree and undirected degree distributions



G. Xiao et al. / Physica A 466 (2017) 249–258 253

Fig. 4. Evolution of the number of components in the LOS network. The number of components in the LOS network has increased from 10 to 15 during its
evolution. Note, components belonged to the first, second and the third categories are denoted by red, green and blue, respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

experience power-law distributions, which is in well accordance with the results of Gao et al. [55] and Wang et al. [56].
Besides, the degrees have awide rangewith the evolution of the LOS network, andmaximal in-degrees aremuch larger than
maximal out-degrees due to the reason that a reliable and readable programming method would usually prefer to write a
function with only a few calls, which limits the value of the maximal out-degree. Meanwhile, the basic service functions
would be called by a tremendous number of high-level functions, which brings extremely large in-degrees. By examining
all versions, it is found that their degree distributions are similar to each other.

3.2. Evolution of components

LOS is a modular design software system, whose source codes are arranged in several major directories which can be
considered as components [62], while subdirectories are usually viewed as functional modules, since they possess specific
functions [63]. The components in the LOS network and their related functions are shown in Table 1.

As shown in Table 1, it can be found that 17 components have appeared in the LOS network during its evolution. However,
not all of the 17 components would exist in each version. In Table 1, the first category indicates that components ibcs and
zBoot exist in versions 1.0 and 1.1. Besides, from the second category of Table 1, it can be shown that eight components
(i.e., drivers, fs, init, ipc, kernel, lib, mm and net) can be found in all versions and constitute the basic component of LOS. The
third category in Table 1 indicates that these components (i.e., arch, block, crypto, security, sound, usr and virt) appear after
version 1.1. In the following, a specific illustration of the evolution of the number of components in the LOS network will be
elaborated.

It can be seen from Fig. 4 that the number of components has increased from 10 in version 1.0 to 15 in version 2.6.25 and
its subsequent versions. In versions 1.0 and 1.1, the number of components is 10 but decreases to 9 in versions 1.2 to 2.5,
which is due to that components ibcs and zBoot were removed while component arch was added in version 1.2 to support
new processors (e.g., ARM processors and MIPS processors). Four new components including crypto, sound, security and usr
were added in version 2.6. Therefore, the number of components increases to 13 in the versions from 2.6 to 2.6.14. The
development of component security is due to the requirements of enhancing the security of LOS, making it becomes one of
the most secure operating systems. Components block and virt were developed in versions 2.6.15 and 2.6.25, respectively.
Thus, the number of components in the LOS network increases to 15 in the versions from 2.6.25 to 4.1. Another observation



254 G. Xiao et al. / Physica A 466 (2017) 249–258

Table 1
Components in the LOS network and their related functions. The first category represents components which only appear in versions 1.0 and 1.1; the
second category represents components which exist in all versions; the third category denotes components which are added after version 1.1. Note, only
those directories which contain.c files and relate to the functionality of LOS are investigated.

Category Component Related function Component Related function

1 (versions 1.0 and 1.1) ibcs Intel binary compatibility standard zBoot Decompress kernel

2 (all versions)

drivers Device drivers fs File systems
init Initialization for the kernel ipc Inter-process communication
kernel Architecture independent main kernel lib Generic library functions
mm Architecture independent memory management net Networking

3 (after version 1.1)

arch Different architectures block Generic block layer
crypto Cryptography framework security Security module
sound Sound system usr Early userspace
virt Virtualization infrastructure

Fig. 5. Evolution of the number of functional modules in the top 4 largest components arch, drivers, fs and net. The number of functional modules grows
with the increasing of sequence numbers.

worth mentioning is that, component drivers occupies about 50% nodes in all versions since LOS supports huge number of
external devices.

3.3. Evolution of functional modules

Fig. 5 shows the evolution of the number of functional modules in the top 4 largest components arch, drivers, fs and
net. It is found that the number of functional modules in arch becomes stable from version 2.6.11 (the sequence number
12) which attributes to the removal of out-of-date architectures, while the number of functional modules in drivers grows
almost linearly due to the flourishing development of device drivers.

Researchers found that the evolution of some entities in real-world complex networks can be considered as a sequence of
certain basic events (changes) succeeding each other [64,65]. Bymanually investigating change logs of LOS and the changing
of the network size of each functional module with its evolution, seven events, including continuing, growth, contraction,
birth, splitting, death andmerging, are observed in the evolution of functional modules, as shown in Fig. 6. These events will
be further discussed in the following.

Note, in this subsection, versionNi represents a specific version of LOS,while versionNi+1 denotes the subsequent version
of Ni.

• Continuing: a functional moduleM1 in version Ni continues its existence in version Ni+1, and the numbers of nodes in the
two versions are identical.

• Growth: a functional module M1 grows when some nodes are added in version Ni+1, making its size bigger than version
Ni. This event could be caused by the consideration of new requirements or bug fixing.



G. Xiao et al. / Physica A 466 (2017) 249–258 255

Fig. 6. Seven events in the evolution of functional modules. (a) Continuing. (b) Growth. (c) Contraction. (d) Birth. (e) Splitting-1. (f) Splitting-2. (g) Death.
(h) Merging-1. (i) Merging-2.

• Contraction: a functional module M1 contracts when some nodes are removed in version Ni+1, making its size smaller
than version Ni. The event could be attributed to the old feature removal or bug fixing.

• Birth: a functional module M1 did not exist in version Ni, but appears in version Ni+1. The birth of a functional module
can be attributed to the new functionality requirement from the developers or users. For instance, functional module ps3
was added in component drivers into version 2.6.20, indicating that Sony PS3 gained official Linux support.

• Splitting: a functional module M1 splits into two or more functional modules in version Ni+1. In Ref. [65], the splitting
events are simply divided into two types: equally or unequally splitting. However, in the LOS network, two different
splitting types are observed, which are depicted in Fig. 6(e)(f). The first (splitting-1) is that a new functional moduleM2 is
forked fromM1, whileM1 is still existing. For example, in component fs, filesystem ext2 splits into ext2 and ext3 in version
2.5 due to the reason that ext3 was developed based on ext2 by forking the source code of ext2. The second (splitting-2)
is to separateM1, which has complex functions, to several functional modules, whose function is more specific.

• Death: a functional module M1 existed in version Ni, but disappears in version Ni+1. Event death is the opposite side of
event birth. If one functional module is out of date or has not been maintained for a long time, it will be removed.

• Merging: a functionalmoduleM1 has been created bymerging several functionalmodules. In Ref. [65], themerging events
are divided into two types: equally or unequally merging. However, in the LOS network, two different merging types are
observed, which are depicted in Fig. 6(h)(i). The first one (merging-1) is some other functional modules are merged into
M1 in order to make the functional modules with the similar functions more convenient to be maintained. The second
one (merging-2) is to create a new functional moduleM1 via assembling some other functional modules. For example, in
component arch, functional module x86 in version 2.6.24 was formed by merging functional modules i386 and x86_64.

Furthermore, we investigate the statistical results of the seven events in the top 4 largest components arch, drivers, fs and
net, as illustrated in Table 2. It should benoted that, the difference of the total numbers of the seven events in Table 2 ismainly
attributed to the different numbers of functional modules. In Table 2, it is notable that birth, splitting, death and merging
events happened mostly on the first and second stages of LOS development, indicating the optimization and regulation of
the functionality of LOS aremostly implemented in the first and the second development stages. Comparatively, continuing,
growth and contraction events are majorly observed in the second and the third stages, since the number of functional
modules is comparatively fewer in the first stage, which can also be figured out from Fig. 5.

As shown in Fig. 7, continuing, growth and contraction events are most likely to occur, and these events in components
arch, drivers, fs and net occupy more than 95%. Comparably, the percentages of birth, death, splitting and merging events



256 G. Xiao et al. / Physica A 466 (2017) 249–258

Table 2
Statistics of the seven events in the top 4 largest components arch, drivers, fs and net. Note, Dev. Stage represents the development stages of LOSmentioned
in Section 2.1.

Comp. Dev. Stage Continuing Growth Contraction Birth Splitting Death Merging Tot.

arch
1st 4 38 7 15 3 0 0

14212nd 90 400 195 20 5 11 8
3rd 133 240 243 7 1 1 0

drivers
1st 19 89 6 40 0 3 0

46812nd 569 1270 214 61 3 8 4
3rd 797 1276 275 35 3 5 4

fs
1st 36 89 37 45 3 2 0

36322nd 737 816 258 36 3 10 1
3rd 693 701 156 6 2 1 0

net
1st 30 67 11 27 1 1 0

25322nd 378 668 128 27 0 2 0
3rd 504 562 116 8 0 2 0

Fig. 7. Percentages of the seven events from versions 1.0 to 4.1 in the top 4 largest components. (a) arch. (b) drivers. (c) fs. (d) net.

are small. However, these events may play crucial roles, since these four events can be regarded as the optimization and
regulation of the functionality of LOS to certain extent.

Another point worthmentioning is that the percentage of contraction events in component arch is the highest comparing
with other components. This phenomenon is mainly due to the removal of out-of-date processors in architectures.

4. Conclusion

LOS evolves to improve their fitness to changing environments, commonly motivated by the new requirements of
hardware architectures and users [66]. In this paper, we have focused on the evolution of network properties and
functionality structures of the LOS network. Our work has revealed initial insights into LOS evolution, suggesting that there
exist recognizable patterns (i.e., network properties evolution trends and evolution events) in the evolution of LOS. The
variation of network properties and evolution events indicates that the evolution of LOS adheres to some principles. On the
other hand, these patterns can be fairly considered as outcomes of the evolution of LOS. Themajor benefits of these outcomes
reflect the variation of the evolution of LOS which are driven by the changing environments and user requirements and vice
versa affecting them. For example, the functional module x86_64 in component arch was developed by forking the codes



G. Xiao et al. / Physica A 466 (2017) 249–258 257

of functional module i386 due to the requirement for supporting 64-bit version of the i386 architecture. However, with the
evolution of the two functionalmodules, bug fixing during themaintenance andnew features introduced in the development
process oftenmake developers confuse that whether all changes beingmade in both functional modules, since there is quite
a lot of commonality between them. This drives developers to merge them, which results in the creation of the functional
module x86. Furthermore, the results of this paper signify that the size of LOS and its functions keep continuously increasing,
also indicate that the usage of core functions (e.g., basic service functions) will increase while the cluster tendency of LOS
will become looser with its evolution. Additionally, a lack of sufficient knowledge of the evolution process would cause
many of the problems in software maintenance, while the results of this paper could provide such data as references for the
maintenance of LOS. In conclusion, these patterns revealed in this paper could be utilized as indicators of the maintenance
or improvement of LOS. Besides, the evolution trends of the patterns could be further used as the evaluation of the next
versions of LOS.

Acknowledgment

The authors would like to thank Dr. Wen-Bo Du from Beihang University for kindly providing valuable technical advices
to this manuscript.

References

[1] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Rev. Modern Phys. 74 (2002) 47.
[2] M.E. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003) 167–256.
[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424 (2006) 175–308.
[4] P. Erdős, A. Rényi, On random graphs, Publ. Math. Debrecen 6 (1959) 290–297.
[5] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’networks, Nature 393 (1998) 440–442.
[6] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509–512.
[7] H. Jeong, S.P. Mason, A.-L. Barabási, Z.N. Oltvai, Lethality and centrality in protein networks, Nature 411 (2001) 41–42.
[8] L. Giot, J.S. Bader, C. Brouwer, A. Chaudhuri, B. Kuang, Y. Li, Y. Hao, C. Ooi, B. Godwin, E. Vitols, A protein interaction map of drosophila melanogaster,

Science 302 (2003) 1727–1736.
[9] J.-F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G.F. Berriz, F.D. Gibbons,M.Dreze, N. Ayivi-Guedehoussou, Towards a proteome-

scale map of the human protein–protein interaction network, Nature 437 (2005) 1173–1178.
[10] R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Breakdown of the internet under intentional attack, Phys. Rev. Lett. 86 (2001) 3682.
[11] R. Pastor-Satorras, A. Vázquez, A. Vespignani, Dynamical and correlation properties of the internet, Phys. Rev. Lett. 87 (2001) 258701.
[12] A. Vázquez, R. Pastor-Satorras, A. Vespignani, Large-scale topological and dynamical properties of the internet, Phys. Rev. E 65 (2002) 066130.
[13] R. Albert, I. Albert, G.L. Nakarado, Structural vulnerability of the north american power grid, Phys. Rev. E 69 (2004) 025103.
[14] P. Crucitti, V. Latora, M. Marchiori, A topological analysis of the italian electric power grid, Physica A 338 (2004) 92–97.
[15] M. Rosas-Casals, S. Valverde, R.V. Solé, Topological vulnerability of the european power grid under errors and attacks, nt, J. Bifurc. Chaos 17 (2007)

2465–2475.
[16] G.A. Pagani, M. Aiello, The power grid as a complex network: a survey, Physica A 392 (2013) 2688–2700.
[17] W. Li, X. Cai, Statistical analysis of airport network of china, Phys. Rev. E 69 (2004) 046106.
[18] R. Guimera, S. Mossa, A. Turtschi, L.A. Amaral, The worldwide air transportation network: Anomalous centrality, community structure, and cities’

global roles, Proc. Natl. Acad. Sci. USA 102 (2005) 7794–7799.
[19] M. Guida, F. Maria, Topology of the italian airport network: A scale-free small-world network with a fractal structure? Chaos Solitons Fractals 31

(2007) 527–536.
[20] G. Bagler, Analysis of the airport network of india as a complex weighted network, Physica A 387 (2008) 2972–2980.
[21] M.E. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA 98 (2001) 404–409.
[22] A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, T. Vicsek, Evolution of the social network of scientific collaborations, Physica A 311 (2002)

590–614.
[23] M.E. Newman, Coauthorship networks and patterns of scientific collaboration, Proc. Natl. Acad. Sci. USA 101 (2004) 5200–5205.
[24] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86 (2001) 3200.
[25] M. Boguná, R. Pastor-Satorras, Epidemic spreading in correlated complex networks, Phys. Rev. E 66 (2002) 047104.
[26] Y. Wang, D. Chakrabarti, C.-X. Wang, C. Faloutsos, Epidemic spreading in real networks: An eigenvalue viewpoint, in: International Symposium on

Reliable Distributed Systems, Proceedings, IEEE, 2003, pp. 25–34.
[27] C. Castellano, R. Pastor-Satorras, Thresholds for epidemic spreading in networks, Phys. Rev. Lett. 105 (2010) 218701.
[28] D.J. Watts, A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA 99 (2002) 5766–5771.
[29] P. Crucitti, V. Latora, M. Marchiori, Model for cascading failures in complex networks, Phys. Rev. E 69 (2004) 045104.
[30] W.-X. Wang, Y.-C. Lai, Abnormal cascading on complex networks, Phys. Rev. E 80 (2009) 036109.
[31] G. Yan, T. Zhou, B. Hu, Z.-Q. Fu, B.-H. Wang, Efficient routing on complex networks, Phys. Rev. E 73 (2006) 046108.
[32] W.-X. Wang, B.-H. Wang, C.-Y. Yin, Y.-B. Xie, T. Zhou, Traffic dynamics based on local routing protocol on a scale-free network, Phys. Rev. E 73 (2006)

026111.
[33] W.-B. Du, Z.-X. Wu, K.-Q. Cai, Effective usage of shortest paths promotes transportation efficiency on scale-free networks, Physica A 392 (2013)

3505–3512.
[34] G. Szabó, G. Fath, Evolutionary games on graphs, Phys. Rep. 446 (2007) 97–216.
[35] W.-B. Du, X.-B. Cao, M.-B. Hu, W.-X. Wang, Asymmetric cost in snowdrift game on scale-free networks, Eur. Phys. Lett. 87 (2009) 60004.
[36] Z. Wang, A. Szolnoki, M. Perc, Interdependent network reciprocity in evolutionary games, Sci. Rep. 3.
[37] Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Controllability of complex networks, Nature 473 (2011) 167–173.
[38] G. Yan, G. Tsekenis, B. Barzel, J.-J. Slotine, Y.-Y. Liu, A.-L. Barabási, Spectrum of controlling and observing complex networks, Nat. Phys. 11 (2015)

779–786.
[39] C. Liu, W.-B. Du, W.-X. Wang, Particle swarm optimization with scale-free interactions, PLoS One 9 (2014) e97822.
[40] Y. Gao, W.-B. Du, G. Yan, Selectively-informed particle swarm optimization, Sci. Rep. 5.
[41] W.-B. Du, Y. Gao, C. Liu, Z. Zheng, Z. Wang, Adequate is better: particle swarm optimization with limited-information, Appl. Math. Comput. 268 (2015)

832–838.
[42] W.-B. Du, W. Ying, G. Yan, Y.-B. Zhu, X.-B. Cao, Heterogeneous strategy particle swarm optimization, IEEE Trans. Circuits Syst. II Exp. Briefs 99 (2016)

1–1.
[43] S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Catastrophic cascade of failures in interdependent networks, Nature 464 (2010) 1025–1028.
[44] W.-B. Du, X.-L. Zhou, O. Lordan, Z. Wang, C. Zhao, Y.-B. Zhu, Analysis of the chinese airline network as multi-layer networks, Transp. Res. E 89 (2016)

108–116.

http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref1
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref2
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref3
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref4
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref5
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref6
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref7
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref8
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref9
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref10
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref11
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref12
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref13
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref14
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref15
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref16
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref17
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref18
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref19
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref20
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref21
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref22
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref23
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref24
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref25
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref26
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref27
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref28
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref29
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref30
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref31
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref32
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref33
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref34
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref35
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref37
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref38
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref39
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref41
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref42
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref43
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref44


258 G. Xiao et al. / Physica A 466 (2017) 249–258

[45] S. Jenkins, S.R. Kirk, Software architecture graphs as complex networks: A novel partitioning scheme to measure stability and evolution, Inf. Sci. 177
(2007) 2587–2601.

[46] G. Concas, M. Marchesi, S. Pinna, N. Serra, Power-laws in a large object-oriented software system, IEEE Trans. Softw. Eng. 33 (2007) 687–708.
[47] P. Louridas, D. Spinellis, V. Vlachos, Power laws in software, ACM Trans. Softw. Eng. Methodol. 18 (2008) 2.
[48] C.R. Myers, Software systems as complex networks: Structure, function, and evolvability of software collaboration graphs, Phys. Rev. E 68 (2003)

046116.
[49] S. Valverde, R.F. Cancho, R.V. Sole, Scale-free networks from optimal design, Eur. Phys. Lett. 60 (2002) 512.
[50] K.-Y. Cai, B.-B. Yin, Software execution processes as an evolving complex network, Inf. Sci. 179 (2009) 1903–1928.
[51] L. Šubelj, M. Bajec, Community structure of complex software systems: Analysis and applications, Physica A 390 (2011) 2968–2975.
[52] A. Silberschatz, P.B. Galvin, G. Gagne, A. Silberschatz, Operating System Concepts, Addison-Wesley Reading, 1998.
[53] G. Hertel, S. Niedner, S. Herrmann, Motivation of software developers in open source projects: an internet-based survey of contributors to the linux

kernel, Res. Poli. 32 (2003) 1159–1177.
[54] X.-L. Zheng, D. Zeng, H.-Q. Li, F.-Y. Wang, Analyzing open-source software systems as complex networks, Physica A 387 (2008) 6190–6200.
[55] Y.-C. Gao, Z. Zheng, F.-Y. Qin, Analysis of linux kernel as a complex network, Chaos Solitons Fractals 69 (2014) 246–252.
[56] H.-Q. Wang, Z. Chen, G.-P. Xiao, Z. Zheng, Network of networks in linux operating system, Physica A 447 (2016) 520–526.
[57] M.A. Fortuna, J.A. Bonachela, S.A. Levin, Evolution of a modular software network, Proc. Natl. Acad. Sci. USA 108 (2011) 19985–19989.
[58] A. Israeli, D.G. Feitelson, The linux kernel as a case study in software evolution, J. Syst. Softw. 83 (2010) 485–501.
[59] D.P. Bovet, M. Cesati, Understanding the Linux Kernel, O’Reilly Media, Inc., 2005.
[60] Y. Tian, J. Lawall, D. Lo, Identifying linux bug fixing patches, in: International Conference on Software Engineering, IEEE, 2012, pp. 386–396.
[61] G. Fagiolo, Clustering in complex directed networks, Phys. Rev. E 76 (2007) 026107.
[62] R. Love, Linux Kernel Development, Pearson Education, 2010.
[63] L.-P. Lu, S.-W. Li, Y.-H. Li, Design of car bluetooth hands-free mobile phone system in linux system, in: International Conference on Automatic Control

and Artificial Intelligence, IET, 2012, pp. 836–839.
[64] G. Palla, A.-L. Barabási, T. Vicsek, Quantifying social group evolution, Nature 446 (2007) 664–667.
[65] P. Bródka, S. Saganowski, P. Kazienko, Ged: the method for group evolution discovery in social networks, Soc. Netw. Anal. Min. 3 (2013) 1–14.
[66] M.M. Lehman, J.F. Ramil, Software evolution—background, theory, practice, Inf. Process. Lett. 88 (2003) 33–44.

http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref45
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref46
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref47
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref48
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref49
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref50
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref51
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref52
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref53
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref54
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref55
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref56
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref57
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref58
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref59
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref60
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref61
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref62
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref63
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref64
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref65
http://refhub.elsevier.com/S0378-4371(16)30637-9/sbref66

	Evolution of Linux operating system network
	Introduction
	Methods
	Research data
	Network modeling

	Results and discussion
	Evolution of network properties
	Evolution of components
	Evolution of functional modules

	Conclusion
	Acknowledgment
	References


