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Abstract—The structures and behaviors of modern software 
systems are more and more complicated, thus the modeling of the 
runtime software systems is difficult. In this paper, we model the 
runtime Linux operating system (LOS) as a weighted network to 
investigate the execution process of LOS. The topologies of the 
weighted LOS network are analyzed and it is found that the 
weight distribution follows a power-law distribution. For better 
understanding the execution process of LOS, we explore the 
manifestations of LOS components. The result shows that the 
component of process management plays the key role in the 
execution process of LOS. Moreover, an assessment of the 
reliability of LOS is proposed by considering the execution status 
of LOS as a discrete time Markov chain. The reliabilities of 10 
LOS versions ranging from versions 3.15 to 4.4 are compared 
and the result shows that the reliability declines. Our work may 
shed a light on the testing and monitoring processes of software 
systems. 

Keywords—Complex network, Linux operating system, Markov 
chain, Software reliability 

I.  INTRODUCTION 
Many natural and artificial systems can be described as 

networks, where the entities are denoted by nodes and the 
relationships between entities are denoted by edges, such as the 
World Wide Web [1], scientific collaborations [2], 
transportation infrastructures [3][4] and biological systems [5]. 
In 1959, the presentation of ER random network model [6], 
which considered that nodes in a network are randomly 
connected, dominated the research on network for decades. 
After that, the breakthrough proposals of small-world network 
model [7] and scale-free network model [8] lead the research 
on complex networks to a flourishing state in varieties of 
research domains from many aspects, such as network 
modeling [9][10][11], epidemic spreading [12][13], cascading 
failures [14], traffic dynamics [15], evolutionary games 
[16][17][18], optimization process [19][20] and social 
dynamics [21][22][23]. One interesting direction worth 
mentioning is to investigate software systems from the view of 
complex networks [24][25][26]. 

Software systems might be one of the most intricate human 
inventions and take more and more important role in our daily 
life now. A better understanding of the structures and behaviors 
of software systems is helpful for designing them. However, it 
is a great challenge to model software systems due to their high 

complexity. Thanks to the complex networks theory as a 
powerful tool to investigate complex systems, researchers have 
studied software systems in the framework of networks. 
Valverde et al. [27] built a software system as a complex 
network and presented the first evidence for the emergence of 
scaling and the presence of small world behavior in software 
systems. Myers [28] examined software systems as complex 
networks and provided a model of software evolution based on 
refactoring processes. 

However, most of the networks are constructed by statically 
analyzing the source code of software systems 
[26][27][28][29]. These networks are not applicable in testing 
and monitoring processes, which are important in the software 
system’s life cycle. Different from the static source code, the 
dynamic execution process of software systems reflects what is 
really going on inner the software. Building the dynamic 
execution processes of software systems are interesting and 
helpful in the understanding of software behaviors. In this 
paper, we construct the dynamic execution process of Linux 
operating system as a weighted network. 

Among various software systems, operating systems are the 
foundation of other software for providing basic execution 
environment. One of the most widely used operating systems is 
Linux operating system (LOS), which is released in 1991 by 
Linus Torvalds and famous for its source open characteristic. 
In our previous work [30][31], the static source code of LOS 
was modelled as an unweighted network and we had a number 
of interesting findings. In this paper, the runtime LOS is built 
as a weighted network and we analyze its topological 
properties. Furthermore, a reliability assessment of LOS by 
constructing the component transition status as a discrete time 
Markov chain (DTMC) is proposed. 

The rest of this paper is organized as follows. Section II 
proposes the network modeling of the dynamic execution of 
LOS. Section  analyzes the topological properties of the 
weighted LOS network. Section  presents different 
manifestations of components in LOS. In Section , the 
reliability of LOS is estimated. Finally, the conclusion of the 
work is given in Section . 

II. MODELING 
LOS consists of thousands of functions which collaborate 

with each other by function calls. The static source code of 
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LOS shows us the overall design for different requirements of 
users and hardware. However, not all of the functions are 
called in a specific execution. Inspired by this, we wish to 
explore the status of the runtime LOS. 
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Fig. 1. Illustration of modelling the execution traces as a weighted network. (a) 
an example of the execution traces; (b) the weighted network represents the 
execution traces.  

In the static analysis of LOS [30][31], we abstracted 
functions and function calls as nodes and edges in an 
unweighted network. Obviously, it is not suitable to adapt the 
unweighted network to represent the runtime LOS when 
considering the dynamic execution status. Therefore, in this 
paper, the execution traces of the runtime LOS are modelled as 
a weighted network, where the calling times of a function call 
are considered as the weight of an edge. An illustration of the 
network modelling is exhibited in Fig. 1. 

III. TOPOLOGICAL PROPERTIES OF WEIGHTED LOS NETWORK 
In this section, Linux version 4.4, the latest version since 

we started this research, is modelled as a weighted network.  

To get the execution information of LOS, an experiment 
was designed to trace the function calls and record their 
execution times in real-time when LOS is running. The 
experiment steps are clearly elaborated in the following. 

• We use a benchmark called Unixbench-5.13 [32], which 
is a widely used Linux testing tool for the testing of 
kinds of LOS performances, to test LOS. Note that, we 
execute the benchmark one time and it costs about 30 
minutes.  

• To trace the function calls in real-time, we utilize a 
powerful and widely used tool called Ftrace to monitor 
and record the execution information. Ftrace is mainly 
developed by Steven Rostedt and merged into the Linux 
kernel mainline in kernel version 2.6.27. It is designed 
to assist developers to find the execution information 
inside the LOS. Note, the functions traced by Ftrace are 
typical for debugging and testing LOS. 

• The trace results from Ftrace when executing the 
Unixbench-5.13 are then recorded and modelled as a 
weighted LOS network according to the way we 
illustrate in Section II. 

TABLE I.  TOPOLOGICAL PARAMETERS 

n  m  w< >   minw  maxw   ,in mins  ,in maxs  ,out mins  ,out maxs  
3098 6109 19661.27 1 5660006 0 11648579 0 6095733 

 

 

Now we study the topological properties of the weighted 
LOS network. It can be observed from Table I that the 
weighted LOS network consists of 3098 nodes and 6109 edges. 
In Table I, w< >  is the average weight of edges, it is about 
twenty thousand and reveals that LOS frequently calls 
functions when executing. minw  is the minimum weight while 

maxw  is the maximum weight which is more than 5 million, and 
its counterpart function call relates to spin lock (a self-
protection mechanism for shared resource) in LOS. Moreover, 
the maximum in-strength ,in maxs , is much larger than the 
maximum out-strength ,out maxs , which can be interpreted as 
follows: 

1) In general, programmers prefer to write a function with 
fewer calls for the purpose of making the program readable and 
reliable.  

2) Some basic service functions are called by huge number 
of functions. This lead to a large value of in-strength. 
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Fig. 2. (a) weight distribution of the weighted LOS network; (b) accumulative 
strength (both in-strength and out-strength) distribution of the weighted LOS 
network. 
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Fig. 2 (a) illustrates the weight distribution ( )P w  of the 
weighted LOS network, which follows a power law 
distribution. It is clearly observed that few nodes have 
extremely large weights while most nodes have small weights. 
Inspired by this, we make a further investigation about the 
weights, which shows that the sum of the top 400 weights 
(6.5% of the whole edges) takes 82.9% percentage of the total 
sum of weights, indicating the high reuse rate of code in the 
execution of LOS. Moreover, the accumulative strength (both 
in-strength and out-strength) distribution of the weighted LOS 
network is shown in Fig. 2 (b). It is found that they both have 
power-law tails, indicating the high level of heterogeneity in 
the weighted LOS network. 
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 Fig. 3. (a) The relationship between out-strength and out-degree. (b) The 
correlation between in-strength and in-degree. (c) The relationship between 

outs  and ins . 

Fig 3 (a) and (b) illustrate the relationship between strength 
and degree, which show that the relationship between out-
strength and out-degree is disordered while the relationship 
between in-strength and in-degree follows power-law 
distribution. Fig. 3 (c) displays a positive power-law relation 
between in-strength and out-strength. This is reasonable that 
with the increasing of the number of calling times of a 
function, the number of its called times also increases. 

IV. MANIFESTATIONS OF LOS COMPONENTS 
LOS is mainly composed of 8 components (i.e. arch, block, 

drivers, fs, kernel, mm, net, security), which collaborate with 
each other to realize the functionality of LOS [33]. In the 
following, we make an analysis of execution counts of the 8 
components to reveal their manifestations in the runtime LOS. 

The strength of a node indicates the number of times it is 
called by LOS. Similarly, we define the strength of component 
I as ( )M I , which is the sum of node strength in a specific 
component. Also, the strength of a component includes in-

strength and out-strength, i.e.  
( ) ( )in in

i I
M I s i

⊂

=� , ( ) ( )out out
i I

M I s i
⊂

=� , where ( )inM I  is the 

in-strength of component I, ( )ins i  is the in-strength of node i, 
( )outM I  is the out-strength of component I, ( )outs i  is the out-

strength of node i. The values of in-strength and out-strength 
reveal the reuse status of a component, indicating the 
importance of components to a certain extent. 
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 Fig. 4. (a) is the out-strength of the 8 components; (b) is the in-strength of the 8 
components. 

In summary, the total number of times that the 8 
components are called occupy 98.98% percentage of the whole 
times of function calls in the execution of LOS, which means 
that the execution of LOS are closely related to the 8 
components. Fig. 4 illustrates the percentage of in-strength and 
out-strength of the 8 components. It is found that kernel 
component occupies more than 50% percentage both in the in-
strength and out-strength, indicating that the behavior of the 
runtime LOS mainly manifests in the operation of kernel. This 
illustrates that kernel takes the most important role in the 
execution of LOS to some extent. Besides, the top 3 
components with high percentages of both in-strength and out-
strength are kernel, mm and fs, which reveals that in the 
runtime LOS, the most 3 frequently executed events are 
process management, memory management and disk operation. 

V. RELIABILITY ASSESSMENT OF LOS 
The reliability of a software system is one of the most 

important properties of software quality. In this part, we 
propose an assessment of the reliability of LOS according to 
the real execution status by establishing a discrete time Markov 
chain (DTMC) [34].  

We describe the modular structure as an absorbing DTMC, 
characterized by its one-step transition probability matrix 

[ ]ijP p= . Note that, all the elements in a row of P add up to 1 
and each of the ijp  values lies in the range [0, 1]. The one-step 
transition probability matrix with n states and m absorbing 
states can be partitioned as: 

0
Q C

P
I

� �
= � �
� �

 

where Q  is an ( ) ( )n m n m− × −  substochastic matrix, I is an 
m m×  identity matrix, 0 is an ( )m n m× −  zero matrix and C is 
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an ( )n m m− ×  matrix. Let kP  be the k-step transition 
probability matrix, then the ( , )i j  entry of kQ  gives the 
probability of arriving in state j from state i after k steps and the 
so called fundamental matrix M is obtained as: 

1 2

0
( ) k k

k
M I Q I Q Q Q Q

∞
−

=

= − = + + + + =��  

Let ,i jX  be the number of visits from state i to state j 
before absorption, it can be shown that the expected number of 
visits from i to j equals the value of ( , ) thi j  element of M, i.e. 

, ,( )i j i jE X m= . Thus, we can obtain the expected number of 
visits from the initial state to state j, denoted as jV . Therefore, 
the system reliability can be obtained by the following equation 

1

i

n
V
i

i
R R

=

= ∏ , where iR  is the reliability of component i. If we 

consider a constant failure rate iλ  of component i, the 

reliability of each component can be obtained by i i
iR e λ τ−= , 

where iτ  is the expected time that each visit to component i 
caused. In the following, we will give a clearly description of 
the reliability estimation of LOS. 

Firstly, we use the number of function calls to calculate the 
one-step transition matrix as illustrated in Fig. 5. In an 
execution, component A calls itself 90 times and B 10 times 
and the corresponding transition probabilities are 0.9 from A to 
A and 0.1 from A to B. For LOS, we regard the execution in a 
component as a state and the end of the execution as the 
absorbing state, thus a DTMC with 9 states is established. The 
one-step transition probability is calculated according to the 
total number of weights among and in components. It is 
observed that kernel is the initial state and has an edge to the 
final state in our experiment. Once we get the one-step 
transition matrix, the fundamental matrix and the expected 
execution times of each component can be obtained through 
the way we demonstrated before. 
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Fig. 5. An illustration of calculating transition probabilities. (a) transition 
times between Component A and B; (b) transition probabilities. 

Secondly, we need to know the constant failure rate and 
expected visiting time in each component. Ftrace gives us an 
entry to obtain the execution time of each function, thus we can 
get the expected visiting time of each component by the 
average of the time that each function in the component cost. 
Then the problem is how we get the failure rate of each 

component. It is obvious that the failure of a system is closely 
related to the fault of the system, which means that the system 
with more faults is more likely to fail. Based on this, it is 
reasonable to give an estimate of the failure rate according to 
the initial fault in the system, which has a verification in the 
Goel-Okumoto model [35]. Additionally, we assume that the 
failure rate of a component can be calculated as i ia kλ = × , 
where ia  is the initial fault in the component, k is a rate 
constant. There are many methods can be utilized to estimate 
the initial number of faults, such as [36][37], here we obtain 
this estimation using the fault density approach [36]. Thus, the 

expected number of faults in component i is 
10000

i
i

FD l
a

×
= , 

where il  is the number of lines in component i and FD is the 
fault density as the number of faults per 10000 lines of code. 
Since the fault density of the LOS is not known, we vary the 
fault density from 1 to 8. Considering that the LOS is hard to 
fail, thus the failure rate is small and we set the rate constant 
as 810k −= . 

Finally, the reliability of LOS as a function of the fault 
density is shown in Fig. 6 (a). It is found that the reliability of 
the LOS drops with the increasing of the fault density. Besides, 
with the increasing of FD, the decreasing percentage of the 
reliability becomes slow. To investigate the reliability among 
different LOS versions, the reliabilities of 10 LOS versions 
(3.15, 3.16, 3.17, 3.18, 3.19, 4.0, 4.1, 4.2, 4.3, 4.4) are 
compared with the same FD (FD = 1), as illustrated in Fig. 6 
(b). It is found that the reliability of LOS decreases slightly 
with the increasing of the sequence numbers. This could be 
interpreted that with the evolution of LOS, it becomes more 
and more complicated. Consequently, the reliability of LOS 
decrease. 
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Fig. 6. (a) the reliability as a function of FD; (b) the reliability of LOS as a 
function of the sequence numbers (SN). Note, SN is the sequence number 
which is assigned to each version according to their release date. i.e., the 
sequence number of version 3.15 is 1 and that for version 4.4 is 10. 

VI. CONCLUSION 
In this paper, we build the runtime LOS as a weighted 

network to explore the execution status of LOS. The 
topological properties of the weighted LOS network are 
analyzed and a notable scale-free phenomenon of the weight 
distribution is found. Besides, the manifestations of different 
components in the runtime LOS are investigated, and the result 
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shows that kernel, mm and fs are the key components in the 
execution process of LOS. This indicates that LOS mainly 
deals with three main events, i.e., process management, 
memory management and disk operation, when it is running. 
Moreover, the execution status of LOS is modeled as a DTMC 
and the reliabilities of 10 LOS versions ranging from 3.15 to 
4.4 are estimated. It is found that with the development of 
LOS, its reliability declines. Our work may shed a light on the 
testing and monitoring processes of software systems and give 
a way to estimate the reliability of large software systems. 
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