
Analysis of the Runtime Linux Operating System as a
Complex Weighted Network

Haoqin Wang

School of Automation Science and Electrical Engineering
Beihang University

Beijing, China
wanghaoqin@buaa.edu.cn

Guanping Xiao

School of Automation Science and Electrical Engineering
Beihang University

Beijing, China
gpxiao@buaa.edu.cn

Abstract—The structures and behaviors of modern software
systems are more and more complicated, thus the modeling of the
runtime software systems is difficult. In this paper, we model the
runtime Linux operating system (LOS) as a weighted network to
investigate the execution process of LOS. The topologies of the
weighted LOS network are analyzed and it is found that the
weight distribution follows a power-law distribution. For better
understanding the execution process of LOS, we explore the
manifestations of LOS components. The result shows that the
component of process management plays the key role in the
execution process of LOS. Moreover, an assessment of the
reliability of LOS is proposed by considering the execution status
of LOS as a discrete time Markov chain. The reliabilities of 10
LOS versions ranging from versions 3.15 to 4.4 are compared
and the result shows that the reliability declines. Our work may
shed a light on the testing and monitoring processes of software
systems.

Keywords—Complex network, Linux operating system, Markov
chain, Software reliability

I. INTRODUCTION
Many natural and artificial systems can be described as

networks, where the entities are denoted by nodes and the
relationships between entities are denoted by edges, such as the
World Wide Web [1], scientific collaborations [2],
transportation infrastructures [3][4] and biological systems [5].
In 1959, the presentation of ER random network model [6],
which considered that nodes in a network are randomly
connected, dominated the research on network for decades.
After that, the breakthrough proposals of small-world network
model [7] and scale-free network model [8] lead the research
on complex networks to a flourishing state in varieties of
research domains from many aspects, such as network
modeling [9][10][11], epidemic spreading [12][13], cascading
failures [14], traffic dynamics [15], evolutionary games
[16][17][18], optimization process [19][20] and social
dynamics [21][22][23]. One interesting direction worth
mentioning is to investigate software systems from the view of
complex networks [24][25][26].

Software systems might be one of the most intricate human
inventions and take more and more important role in our daily
life now. A better understanding of the structures and behaviors
of software systems is helpful for designing them. However, it
is a great challenge to model software systems due to their high

complexity. Thanks to the complex networks theory as a
powerful tool to investigate complex systems, researchers have
studied software systems in the framework of networks.
Valverde et al. [27] built a software system as a complex
network and presented the first evidence for the emergence of
scaling and the presence of small world behavior in software
systems. Myers [28] examined software systems as complex
networks and provided a model of software evolution based on
refactoring processes.

However, most of the networks are constructed by statically
analyzing the source code of software systems
[26][27][28][29]. These networks are not applicable in testing
and monitoring processes, which are important in the software
system’s life cycle. Different from the static source code, the
dynamic execution process of software systems reflects what is
really going on inner the software. Building the dynamic
execution processes of software systems are interesting and
helpful in the understanding of software behaviors. In this
paper, we construct the dynamic execution process of Linux
operating system as a weighted network.

Among various software systems, operating systems are the
foundation of other software for providing basic execution
environment. One of the most widely used operating systems is
Linux operating system (LOS), which is released in 1991 by
Linus Torvalds and famous for its source open characteristic.
In our previous work [30][31], the static source code of LOS
was modelled as an unweighted network and we had a number
of interesting findings. In this paper, the runtime LOS is built
as a weighted network and we analyze its topological
properties. Furthermore, a reliability assessment of LOS by
constructing the component transition status as a discrete time
Markov chain (DTMC) is proposed.

The rest of this paper is organized as follows. Section II
proposes the network modeling of the dynamic execution of
LOS. Section analyzes the topological properties of the
weighted LOS network. Section presents different
manifestations of components in LOS. In Section , the
reliability of LOS is estimated. Finally, the conclusion of the
work is given in Section .

II. MODELING
LOS consists of thousands of functions which collaborate

with each other by function calls. The static source code of

2016 International Conference on Software Analysis, Testing and Evolution

978-1-5090-4517-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SATE.2016.8

7

LOS shows us the overall design for different requirements of
users and hardware. However, not all of the functions are
called in a specific execution. Inspired by this, we wish to
explore the status of the runtime LOS.

A B
A B
A B
A C
A C

A

B C

3 2
(a) (b)

Fig. 1. Illustration of modelling the execution traces as a weighted network. (a)
an example of the execution traces; (b) the weighted network represents the
execution traces.

In the static analysis of LOS [30][31], we abstracted
functions and function calls as nodes and edges in an
unweighted network. Obviously, it is not suitable to adapt the
unweighted network to represent the runtime LOS when
considering the dynamic execution status. Therefore, in this
paper, the execution traces of the runtime LOS are modelled as
a weighted network, where the calling times of a function call
are considered as the weight of an edge. An illustration of the
network modelling is exhibited in Fig. 1.

III. TOPOLOGICAL PROPERTIES OF WEIGHTED LOS NETWORK
In this section, Linux version 4.4, the latest version since

we started this research, is modelled as a weighted network.

To get the execution information of LOS, an experiment
was designed to trace the function calls and record their
execution times in real-time when LOS is running. The
experiment steps are clearly elaborated in the following.

• We use a benchmark called Unixbench-5.13 [32], which
is a widely used Linux testing tool for the testing of
kinds of LOS performances, to test LOS. Note that, we
execute the benchmark one time and it costs about 30
minutes.

• To trace the function calls in real-time, we utilize a
powerful and widely used tool called Ftrace to monitor
and record the execution information. Ftrace is mainly
developed by Steven Rostedt and merged into the Linux
kernel mainline in kernel version 2.6.27. It is designed
to assist developers to find the execution information
inside the LOS. Note, the functions traced by Ftrace are
typical for debugging and testing LOS.

• The trace results from Ftrace when executing the
Unixbench-5.13 are then recorded and modelled as a
weighted LOS network according to the way we
illustrate in Section II.

TABLE I. TOPOLOGICAL PARAMETERS

n m w< > minw maxw ,in mins ,in maxs ,out mins ,out maxs
3098 6109 19661.27 1 5660006 0 11648579 0 6095733

Now we study the topological properties of the weighted
LOS network. It can be observed from Table I that the
weighted LOS network consists of 3098 nodes and 6109 edges.
In Table I, w< > is the average weight of edges, it is about
twenty thousand and reveals that LOS frequently calls
functions when executing. minw is the minimum weight while

maxw is the maximum weight which is more than 5 million, and
its counterpart function call relates to spin lock (a self-
protection mechanism for shared resource) in LOS. Moreover,
the maximum in-strength ,in maxs , is much larger than the
maximum out-strength ,out maxs , which can be interpreted as
follows:

1) In general, programmers prefer to write a function with
fewer calls for the purpose of making the program readable and
reliable.

2) Some basic service functions are called by huge number
of functions. This lead to a large value of in-strength.

10-1 100 101 102 103 104 105 106 107 108
10-4

10-3

10-2

10-1

10-1 100 101 102 103 104 105 106 107 108
10-4

10-3

10-2

10-1

100

w

p(w)

(a)

 sout

 sin

s

p(>s)

(b)

Fig. 2. (a) weight distribution of the weighted LOS network; (b) accumulative
strength (both in-strength and out-strength) distribution of the weighted LOS
network.

8

Fig. 2 (a) illustrates the weight distribution ()P w of the
weighted LOS network, which follows a power law
distribution. It is clearly observed that few nodes have
extremely large weights while most nodes have small weights.
Inspired by this, we make a further investigation about the
weights, which shows that the sum of the top 400 weights
(6.5% of the whole edges) takes 82.9% percentage of the total
sum of weights, indicating the high reuse rate of code in the
execution of LOS. Moreover, the accumulative strength (both
in-strength and out-strength) distribution of the weighted LOS
network is shown in Fig. 2 (b). It is found that they both have
power-law tails, indicating the high level of heterogeneity in
the weighted LOS network.

0 20 40 60 80 100

0.0

2.0

4.0

6.0

8.0

0 50 100 150 200 250
0

2

4

6

8

10

12

10-1
100
101
102
103
104
105
106
107
108

10-1 100 101 102 103 104 105 106 107

(a)

kout

<sout>

×105

(b)

 Fitting line

kin

<sin> ~ k2.4
in<sin>

×106

sin

sout

(c)

 Fig. 3. (a) The relationship between out-strength and out-degree. (b) The
correlation between in-strength and in-degree. (c) The relationship between

outs and ins .

Fig 3 (a) and (b) illustrate the relationship between strength
and degree, which show that the relationship between out-
strength and out-degree is disordered while the relationship
between in-strength and in-degree follows power-law
distribution. Fig. 3 (c) displays a positive power-law relation
between in-strength and out-strength. This is reasonable that
with the increasing of the number of calling times of a
function, the number of its called times also increases.

IV. MANIFESTATIONS OF LOS COMPONENTS
LOS is mainly composed of 8 components (i.e. arch, block,

drivers, fs, kernel, mm, net, security), which collaborate with
each other to realize the functionality of LOS [33]. In the
following, we make an analysis of execution counts of the 8
components to reveal their manifestations in the runtime LOS.

The strength of a node indicates the number of times it is
called by LOS. Similarly, we define the strength of component
I as ()M I , which is the sum of node strength in a specific
component. Also, the strength of a component includes in-

strength and out-strength, i.e.
() ()in in

i I
M I s i

⊂

=� , () ()out out
i I

M I s i
⊂

=� , where ()inM I is the

in-strength of component I, ()ins i is the in-strength of node i,
()outM I is the out-strength of component I, ()outs i is the out-

strength of node i. The values of in-strength and out-strength
reveal the reuse status of a component, indicating the
importance of components to a certain extent.

0.12%1.83%1.84%
2.02%

7.65%

52.68%

16.39%

17.48%

(a)

0.12%1.15%2.3%2.57%
5.86%

8.96%

16.68%

 kernel
 mm
 fs
 drivers
 arch
 security
 net
 block

(b)

62.37%

 Fig. 4. (a) is the out-strength of the 8 components; (b) is the in-strength of the 8
components.

In summary, the total number of times that the 8
components are called occupy 98.98% percentage of the whole
times of function calls in the execution of LOS, which means
that the execution of LOS are closely related to the 8
components. Fig. 4 illustrates the percentage of in-strength and
out-strength of the 8 components. It is found that kernel
component occupies more than 50% percentage both in the in-
strength and out-strength, indicating that the behavior of the
runtime LOS mainly manifests in the operation of kernel. This
illustrates that kernel takes the most important role in the
execution of LOS to some extent. Besides, the top 3
components with high percentages of both in-strength and out-
strength are kernel, mm and fs, which reveals that in the
runtime LOS, the most 3 frequently executed events are
process management, memory management and disk operation.

V. RELIABILITY ASSESSMENT OF LOS
The reliability of a software system is one of the most

important properties of software quality. In this part, we
propose an assessment of the reliability of LOS according to
the real execution status by establishing a discrete time Markov
chain (DTMC) [34].

We describe the modular structure as an absorbing DTMC,
characterized by its one-step transition probability matrix

[]ijP p= . Note that, all the elements in a row of P add up to 1
and each of the ijp values lies in the range [0, 1]. The one-step
transition probability matrix with n states and m absorbing
states can be partitioned as:

0
Q C

P
I

� �
= � �
� �

where Q is an () ()n m n m− × − substochastic matrix, I is an
m m× identity matrix, 0 is an ()m n m× − zero matrix and C is

9

an ()n m m− × matrix. Let kP be the k-step transition
probability matrix, then the (,)i j entry of kQ gives the
probability of arriving in state j from state i after k steps and the
so called fundamental matrix M is obtained as:

1 2

0
() k k

k
M I Q I Q Q Q Q

∞
−

=

= − = + + + + =��

Let ,i jX be the number of visits from state i to state j
before absorption, it can be shown that the expected number of
visits from i to j equals the value of (,) thi j element of M, i.e.

, ,()i j i jE X m= . Thus, we can obtain the expected number of
visits from the initial state to state j, denoted as jV . Therefore,
the system reliability can be obtained by the following equation

1

i

n
V
i

i
R R

=

= ∏ , where iR is the reliability of component i. If we

consider a constant failure rate iλ of component i, the

reliability of each component can be obtained by i i
iR e λ τ−= ,

where iτ is the expected time that each visit to component i
caused. In the following, we will give a clearly description of
the reliability estimation of LOS.

Firstly, we use the number of function calls to calculate the
one-step transition matrix as illustrated in Fig. 5. In an
execution, component A calls itself 90 times and B 10 times
and the corresponding transition probabilities are 0.9 from A to
A and 0.1 from A to B. For LOS, we regard the execution in a
component as a state and the end of the execution as the
absorbing state, thus a DTMC with 9 states is established. The
one-step transition probability is calculated according to the
total number of weights among and in components. It is
observed that kernel is the initial state and has an edge to the
final state in our experiment. Once we get the one-step
transition matrix, the fundamental matrix and the expected
execution times of each component can be obtained through
the way we demonstrated before.

10

0.1

 (a) (b)

Fig. 5. An illustration of calculating transition probabilities. (a) transition
times between Component A and B; (b) transition probabilities.

Secondly, we need to know the constant failure rate and
expected visiting time in each component. Ftrace gives us an
entry to obtain the execution time of each function, thus we can
get the expected visiting time of each component by the
average of the time that each function in the component cost.
Then the problem is how we get the failure rate of each

component. It is obvious that the failure of a system is closely
related to the fault of the system, which means that the system
with more faults is more likely to fail. Based on this, it is
reasonable to give an estimate of the failure rate according to
the initial fault in the system, which has a verification in the
Goel-Okumoto model [35]. Additionally, we assume that the
failure rate of a component can be calculated as i ia kλ = × ,
where ia is the initial fault in the component, k is a rate
constant. There are many methods can be utilized to estimate
the initial number of faults, such as [36][37], here we obtain
this estimation using the fault density approach [36]. Thus, the

expected number of faults in component i is
10000

i
i

FD l
a

×
= ,

where il is the number of lines in component i and FD is the
fault density as the number of faults per 10000 lines of code.
Since the fault density of the LOS is not known, we vary the
fault density from 1 to 8. Considering that the LOS is hard to
fail, thus the failure rate is small and we set the rate constant
as 810k −= .

Finally, the reliability of LOS as a function of the fault
density is shown in Fig. 6 (a). It is found that the reliability of
the LOS drops with the increasing of the fault density. Besides,
with the increasing of FD, the decreasing percentage of the
reliability becomes slow. To investigate the reliability among
different LOS versions, the reliabilities of 10 LOS versions
(3.15, 3.16, 3.17, 3.18, 3.19, 4.0, 4.1, 4.2, 4.3, 4.4) are
compared with the same FD (FD = 1), as illustrated in Fig. 6
(b). It is found that the reliability of LOS decreases slightly
with the increasing of the sequence numbers. This could be
interpreted that with the evolution of LOS, it becomes more
and more complicated. Consequently, the reliability of LOS
decrease.

0 1 2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10
0.80

0.82

0.84

0.86

0.88

0.90

R

FD

(a)

 Fitting line

R

SN

(b)

Fig. 6. (a) the reliability as a function of FD; (b) the reliability of LOS as a
function of the sequence numbers (SN). Note, SN is the sequence number
which is assigned to each version according to their release date. i.e., the
sequence number of version 3.15 is 1 and that for version 4.4 is 10.

VI. CONCLUSION
In this paper, we build the runtime LOS as a weighted

network to explore the execution status of LOS. The
topological properties of the weighted LOS network are
analyzed and a notable scale-free phenomenon of the weight
distribution is found. Besides, the manifestations of different
components in the runtime LOS are investigated, and the result

10

shows that kernel, mm and fs are the key components in the
execution process of LOS. This indicates that LOS mainly
deals with three main events, i.e., process management,
memory management and disk operation, when it is running.
Moreover, the execution status of LOS is modeled as a DTMC
and the reliabilities of 10 LOS versions ranging from 3.15 to
4.4 are estimated. It is found that with the development of
LOS, its reliability declines. Our work may shed a light on the
testing and monitoring processes of software systems and give
a way to estimate the reliability of large software systems.

ACKNOWLEDGMENT
The authors would like to thank Dr. Wen-Bo Du from

Beihang University for kindly providing valuable advices to
this manuscript.

REFERENCES
[1] R. Albert, H. Jeong, A.L. Barabási, Internet: Diameter of the world-wide

web, Nature, vol. 401, pp. 130-131, September 1999.
[2] M.E.J. Newman, Scientific collaboration networks. I. Network

construction and fundamental results, Phys. Rev. E, vol. 64, pp. 016131,
July 2001.

[3] J. Zhang, X.B. Cao, W.B. Du, K. Q. Cai, Evolution of chinese airport
network, Physica A: Statistical Mechanics and its Applications, vol. 389,
pp. 3922-3931, September 2010.

[4] W.B. Du, X.L. Zhou, O. Lordan, Z. Wang, C. Zhao, Y.B. Zhu, Analysis
of the Chinese Airline Network as multi-layer networks, Transportation
Research Part E: Logistics and Transportation Review, vol. 89, pp. 108-
116, May 2016.

[5] H. Jeong, B. Tembor, R. Albert, Z.N. Oltvai and A.L. Barabási, The
large-scale organization of metabolic networks. Nature, vol. 407, pp.
651-654, October 2000.

[6] P. Erd�s, A. Rényi, On random graphs I, Publ. Math. Debrecen, vol. 6,
pp. 290-297, 1959.

[7] D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks,
Nature, vol. 393, pp. 440-442, June 1998.

[8] A.L. Barabási, R. Albert, Emergence of scaling in random networks,
Science, vol. 286, pp. 509-512, October 1999.

[9] A. Barrat, M. Barthélemy, A. Vespignani, Weighted evolving networks:
coupling topology and weight dynamics, Phys. Rev. Lett., vol. 92, pp.
228701, June 2004.

[10] T. Zhou, G. Yan, B.H. Wang, Maximal planar networks with large
clustering coefficient and power-law degree distribution, Phys. Rev. E,
vol. 71, pp. 046141, April 2005.

[11] W.X. Wang, B.H. Wang, B. Hu, G. Yan, Q. Ou, General dynamics of
topology and traffic on weighted technological networks, Phys. Rev.
Lett., vol. 94, pp. 188702, May 2005.

[12] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free
networks, Phys. Rev. Lett., vol. 86, pp. 3200, April 2001.

[13] H.X. Yang, W.X. Wang, Y.C. Lai, Y.B. Xie, B.H. Wang, Control of
epidemic spreading on complex networks by local traffic dynamics,
Phys. Rev. E, vol. 84, pp. 045101, October 2011.

[14] W. Wang, Y.C. Lai, Abnormal cascading on complex networks, Phys.
Rev. E, vol. 80, pp. 036109, September 2009.

[15] W.B. Du, Z.X. Wu, K.Q. Cai, Effective usage of shortest paths promotes
transportation efficiency on scale-free networks, Physica A: Statistical

Mechanics and its Applications, vol. 392, pp. 3505–3512, September
2013.

[16] W.B. Du, X.B. Cao, M.B. Hu, W.X. Wang, Asymmetric cost in
snowdrift game on scale-free networks, Europhys. Lett., vol. 87, pp.
60004, October 2009.

[17] Z. Wang, A. Szolnoki, M. Perc, Optimal interdependence between
networks for the evolution of cooperation, Sci. Rep., vol. 3, pp. 2470,
August 2013.

[18] A. Szolnoki, M. Perc, Reentrant phase transitions and defensive
alliances in social dilemmas with informed strategies, Europhys. Lett.,
vol. 110, pp. 38003, May 2015.

[19] C. Liu, W.B. Du, W.X. Wang, Particle swarm optimization with scale-
free interactions, PLoS One, vol. 9, pp. e97822, May 2014.

[20] Y. Gao, W.B. Du, G. Yan, Selectively-informed particle swarm
optimization, Sci. Rep., vol. 5, pp. 9295, March 2015.

[21] C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social
dynamics, Rev. Modern Phys., vol. 81, pp. 591, May 2009.

[22] Z. Wang, Y. Liu, L. Wang, Y. Zhang, Freezing period strongly impacts
the emergence of a global consensus in the voter model, Sci. Rep., vol. 4
pp. 3597, January 2014.

[23] W.B. Du, Y. Gao, C. Liu, Z. Zheng, Z. Wang, Adequate is better:
particle swarm optimization with limited-information, Appl. Math.
Comput., vol. 268, pp. 832-838, October 2015.

[24] S. Jenkins, S.R. Kirk, Software architecture graphs as complex
networks: A novel partitioning scheme to measure stability and
evolution, Inform. Sci., vol. 177, pp. 2587-2601, June 2007.

[25] G. Concas, M. Marchesi, S. Pinna, N. Serra, Power-laws in a large
object-oriented software system, IEEE Trans. Softw. Eng., vol. 33, pp.
687-708, October 2007.

[26] P. Louridas, D. Spinellis, V. Vlachos, Power laws in software, ACM
Trans. Softw. Eng. Methodol., vol. 18, pp.2, September 2008.

[27] S. Valverde, R.F. Cancho, R.V. Sole, Scale-free networks from optimal
design, Europhys. Lett., vol. 60, pp.512, September 2002.

[28] C.R. Myers, Software systems as complex networks: Structure, function,
and evolvability of software collaboration graphs, Phys. Rev. E, vol. 68,
pp. 046116, October 2003.

[29] L. Subelj and M. Bajec. Community structure of complex software
systems: Analysis and applications, Physica A: Statistical Mechanics
and its Applications, vol. 390, pp. 2968–2975, August 2011.

[30] Y.C. Gao, Z. Zheng and F.Y. Qin. Analysis of Linux kernel as a
complex network, Chaos, Solitons & Fractals, vol. 69, pp. 246-252,
December 2014.

[31] H.Q. Wang, Z. Chen, G.P. Xiao and Z. Zheng. Network of networks in
linux operating system, Physica A Statistical Mechanics & Its
Applications, vol. 447, pp. 520-526, April 2016.

[32] https://code.google.com/p/byte-unixbench
[33] Robert Love, Linux kernel development, Pearson Education, 2010.
[34] R.C. Cheung, A user-oriented software reliability model, IEEE Trans.

Software Eng, vol. 6, pp 118–125, March 1980.
[35] A.L. Goel, K. Okumoto, Time-Dependent Error-Detection Rate Model

for Software Reliability and Other Performance Measures, IEEE
transactions on Reliability, vol. 3,pp. 206-211, 1979.

[36] M. Lipow, Number of Faults per Line of Code, IEEE Transactions on
Software Engineering, vol. SE-8, pp. 437 – 439, July 1982.

[37] Swapna S. Gokhale Kishor S. Trivedi. Reliability Prediction and
Sensitivity Analysis Based on Software Architecture, Software
Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th
International Symposium on, 2002, pp. 64-75.

11

