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Abstract

The prediction of bug types provides useful insights into the software maintenance process.
It can improve the efficiency of software testing and help developers adopt correspond-
ing strategies to fix bugs before releasing software projects. Typically, the prediction tasks
are performed through machine learning classifiers, which rely heavily on labeled data.
However, for a software project that has insufficient labeled data, it is difficult to train
the classification model for predicting bug types. Although labeled data of other projects
can be used as training data, the results of the cross-project prediction are often poor.
To solve this problem, this paper proposes a cross-project bug type prediction framework
based on transfer learning. Transfer learning breaks the assumption of traditional machine
learning methods that the training set and the test set should follow the same distribution.
Our experiments show that the results of cross-project bug type prediction have significant
improvement by adopting transfer learning. In addition, we have studied the factors that
influence the prediction results, including different pairs of source and target projects, and
the number of bug reports in the source project.

Keywords Bug prediction - Cross-project - Bug report - Transfer learning

1 Introduction

Bugs are inevitably existed in software projects, even though these projects are developed
by experienced developers using powerful development platforms. Predicting bug types is
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very beneficial for helping developers analyze bug characteristics and conduct correspond-
ing solutions, such as developing automatic detection tools or fault tolerance techniques to
eliminate the same/similar bugs in the future releases (Trivedi et al. 2011). Several studies
use machine learning classifiers to perform bug type prediction tasks, whose models are
trained using software metrics calculated from source files (Qin et al. 2018) or text informa-
tion in bug reports (Zhou et al. 2016). For example, Wen et al. (2016) proposed a two-step
automated approach that integrates natural language processing, information retrieval, and
machine learning to predict configuration bugs. Javed et al. (2012) used Multinomial Naive
Bayes classifier to classify bugs into different labels. Du et al. (2017) utilized seven state-of-
the-art machine learning classifiers to automatically classify bugs based on fault triggering
conditions.

When predicting bug types, training data and test data fed into machine learning clas-
sifiers are usually from the same project. However, several reasons may lead to the
lack of labeled data of a software project. For example, a newly released project may
have a few amounts of bug data; it is not cost-effective to collect or label bug data;
bug data is not available to be accessed. As a result, it would not have enough labeled
data to perform within-project bug type prediction tasks. Intuitively, we can use labeled
data from other projects that have similar types of bugs to conduct the cross-project bug
type prediction (Qin et al. 2018). In this circumstance, training data and test data that
come from different projects cannot satisfy the assumption of traditional machine learn-
ing methods, i.e., the data distributions of training and test sets should be identical (Weiss
et al. 2016). Consequently, compared with the within-project bug type prediction, the
cross-project bug type prediction would have a lower performance. Therefore, how to
improve the performance of cross-project bug type prediction is a crucial issue of this
paper.

Transfer learning breaks the assumption of traditional machine learning methods. When
the amount of training data is insufficient in one domain, it can be used to improve the
learner by transferring information from a related domain (Pan and Yang 2010). Due to this
advantage, transfer learning has many applications, such as text sentiment classification and
multilingual text classification (Wang and Mahadevan 2011; Zhou et al. 2014). In software
engineering research, transfer learning has been used in cross-project bug prediction tasks
(He et al. 2012; Jing et al. 2015), which predicts bugs in source code based on software
metrics. Different from existing work, we aim to predict the types of bugs based on text
information contained in bug reports. Bug reports from different projects have several com-
mon features. For example, the “summary” section of bug reports is described in the form
of natural language and is used to summarize issues encountered by developers/users dur-
ing the usage of a software system. Thus, it is possible to use transfer learning to migrate
useful information from another project to predict bug types of a project based on the text
information in bug reports.

In this paper, we propose a cross-project bug type prediction framework based on transfer
learning by using text information contained in the “summary” section of bug reports. The
transfer learning method used in this paper is TrAdaBoost (Dai Wenyuan et al. 2007b). We
have studied the effectiveness of the proposed framework and the influencing factors of
the transferring performance. This paper mainly focuses on answering the following three
research questions.

RQ1: How to use transfer learning to perform cross-project bug type prediction?

RQ2: How do different pairs of source and target projects affect the bug type
prediction results?
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RQ3: How does the number of bug reports from the source project impact the cross-
project bug type prediction results?

This paper makes the following main contributions.

1. A cross-project bug type prediction framework based on transfer learning is proposed
and the impact of transfer learning on cross-project bug type prediction is analyzed.

2. The transferring performance between six different pairs of source and target projects
was analyzed, including MySQL—HTTPD, AXIS—HTTPD, MySQL— AXIS,
HTTPD— AXIS, HTTPD—MySQL, and AXIS—MySQL.

3. The impact of the number of bug reports from a source project is analyzed by
proportionally increasing the number of the source project’s bug reports.

The remainder of this paper is organized as follows. The approach is introduced in
Section 2. Section 3 presents the experiment setups. Section 4 shows the experiments and
analyzes the experimental results. Section 5 discusses the threats to validity. Section 6
introduces the related work. Finally, conclusion and discussion are presented in Section 7.

2 Approach
2.1 Framework

The framework consists of five steps, i.e., data collection, data pre-processing, bug report
representation, transfer learning, and bug type prediction, as shown in Fig. 1.

Step 1. Data collection: The first step of the framework is data collection. Bug reports
used in this paper come from four projects, i.e., Linux, MySQL, HTTPD, and AXIS. For
each project, bug reports are classified into Bohrbugs (BOH) and Mandelbugs (MAN)
(Grottke and Trivedi 2005). Bohrbug is a kind of bug that is easy to isolate, and whose
failure manifestation is consistent under a well-defined set of triggering conditions.
In contrast, Mandelbug is a kind of bug whose activation and/or error propagation is

Step 1: Data collection Step 4: Transfer learning

| Bug reports
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Step 2: Data pre-processing

Word tokenization
— —»  Project2 —#» Targetdata Test data

Stop-word removal |
\. |
I

Lemmatization

|
v

Step 3: Text representation

|
|
|
|
|
|
|
|
|
|
Texts | .
| Step 5: Bug type prediction
|
Machine learnin,
: classifier f— Bug type

Semantic model —» Skip-gram model _Ve;or%

\

Fig.1 A transfer-learning-based cross-project bug type prediction framework
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complex, and they are difficult to be reproduced by traditional techniques. In this study,
the labeled bug reports of the Linux project are from Xiao et al. (2017), while the labeled
bug reports of the MySQL, HTTPD, and AXIS projects are from Cotroneo et al. (2013).
The “summary” section of bug reports is taken as the feature of our framework.

Step 2. Data pre-processing: The second step is data pre-processing. After the data
collection, it is necessary to pre-process bug reports because they may have several
meaningless characters in the “summary” section. The pre-processing step in this paper
includes word tokenization, stop-word removal, and lemmatization. These operations are
elaborated in Section 2.2.

Step 3. Bug report representation: Bug reports are represented by a semantic model
trained using word2vec, a word embedding tool proposed by Mikolov et al. (2013b).
For the training of the semantic model, 134277 bug reports were downloaded from bug
tracking systems (e.g., Bugzilla and JIRA). The text information (e.g., summary and
description) in bug reports were extracted as raw corpora for training the semantic model.
In the semantic model, each word from the bug reports can be represented as a word vec-
tor. The distance between two vectors can be used to measure the semantic relationship
between two words. A vector representation of each bug report is obtained by averaging
the word vectors of words in its “summary” section. In Section 2.3, we present details of
the step.

Step 4. Transfer learning: The project (i.e., target project) that is needed to perform
bug type prediction may not have enough labeled bug reports for training the classifica-
tion model, while other projects (i.e., source projects) may have a large amount of label
data. Transfer learning can capture useful information from the source project as addi-
tional training data for the target project’s prediction. In this study, we use TrAdaBoost,
a classic transfer learning method proposed by Dai Wenyuan et al. (2007b). The detailed
procedure of using TrAdaBoost is shown in Section 2.4.

Step 5. Bug type prediction: Machine learning classifiers are used to predict the type
of bugs in this step. To compare the performance of different classifiers, three machine
learning classifiers are used, including Gradient Boosting Classifier (GBC), SGDClas-
sifier (SGD), and AdaBoostClassifier (ABC). The evaluation metrics used in this paper
are precision, recall, and F-measure.

2.2 Data pre-processing

The text contained in the “summary” section of each bug report is pre-processed in three
steps, i.e., word tokenization, stop-word removal, and lemmatization. We use built-in
functions provided by the NLTK toolkit to perform these steps (Loper and Bird 2002).

1. Word tokenization: It is a basic step of text pre-processing, which divides the text into
a stream of words or meaningful elements. In this step, numbers and punctuations that
appear in the text are removed. The other non-alphabetic characters (e.g., “#”, “*”, and
“&”) are replaced with spaces. After these two operations, the remaining words in the
“summary” section of bug reports are tokenized into a word list. For example, given a
report’s summary “Kernel hangs when APIC/ACPI enabled,” after the word tokenization,
we obtain [“kernel,” “hangs,” “when,” “apic,” “acpi,” “enabled”].

2. Stop-word removal: In information retrieval and text mining, many of the most fre-
quently used words in English are useless, which are called stop words. These words are
frequently used words but contain no information (e.g., “and,” “the,” “to””). Removing
stop words in the “summary” usually would not affect the understanding of bugs. For
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example, for a summary in a bug report “Changing the CPU frequency using CPUFREQ
hangs the kernel,” the word “the” is removed in this step. It is an important step in text
pre-processing to exclude unimportant information by removing stop words (Silva and
Ribeiro 2003).

3. Lemmatization: We perform lemmatization to find the canonical form of a word. After
lemmatization, we can obtain a meaningful and complete word, which is generally a
valid word in the dictionary. For example, the word “aliases” in the bug summary (e.g.,
“broken module aliases in ieee1394 drivers”) is transformed into its standard form “alias”
after lemmatization. Lemmatization is often used for text mining and natural language
processing fields (Plisson et al. 2004).

2.3 Bug report representation

We use word2vec to train a semantic model to represent bug reports. Two models are
available in word2vec, including continuous bag-of-words model and continuous skip-gram
model (Mikolov et al. 2013a, b). In word2vec, deep neural networks are used to learn the
semantic information contained in the context of corpora to generate low-dimensional word
vector representations, i.e., “word embedding.” For the continuous bag-of-words model,
it predicts the current word based on its context, while the skip-gram model predicts the
surrounding words given a current word.

In our study, we use the skip-gram model, which has been shown to work well in solv-
ing software engineering tasks (Yang et al. 2016). Given a current word w;, we denote
the set of the context of w; as Context,,. For example, the summary of the Linux bug
ID-4707 is “memory leak somewhere in toshiba_acpi.” Figure 2 denotes the training pro-
cess of the skip-gram model. The current word w; = somewhere is mapped to its word
vector vy, . The skip-gram model predicts the word vectors of the current word’s left and

right C surrounding words (e.g., C = 2). Context,, = {memory,leak, toshiba, acpi}
are the context words of w;, = somewhere. The training process optimizes the word
Context,,
'// _________________________ AN
memory leak toshiba acpi Output
Projection
A
somewhere Input
w

Fig.2 Example of Skip-gram
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embedding v, and the neural network model parameters aiming to maximize the objective
function f:

T
f=%2 > logp(welw;) eh)

t=1 wceContexty,

where w, is the word in the context of w,. T is the length of the word sequence. The
probability p(w.|w,) is formulated using a soft-max function:

pelg) = — 5P Qe V)
clWr) =
Z;‘/:l exp(vgj “Vy,)

@)

where vy, is the word vector of word w,, and W is the length of word vocabulary.

The vector of a bug report is obtained by averaging the vectors of all the words in its
“summary” section. Thus, each bug report can be represented as a vector, which represents
the characteristic of the bug report.

2.4 Transfer learning

The transfer learning method used in this study is TrAdaBoost. According to different situ-
ations of tasks between the source and target domain, transfer learning has three types (Pan
and Yang 2010), including inductive transfer learning, transductive transfer learning, and
unsupervised transfer learning. Furthermore, each type can be summarized into four cases
based on “What to transfer,” i.e., instance-based transfer learning, feature-representation-
transfer approach, parameter-transfer approach, and relational-knowledge-transfer problem.
TrAdaBoost, one of the typical methods, belongs to instance-based transfer approach
of the inductive transfer learning (Dai Wenyuan et al. 2007b). The advantages of using
TrAdaBoost are as follows.

First, the characteristics of bug data in this paper satisfy the requirements of TrAdaBoost,
which assumes that the data of source project and target project have the same set of features
and labels, but the distributions are different. The feature representations of bug reports in
the source project and target project are denoted by word vectors, which means the data
features of the source project and target project are the same. In addition, the prediction
labels for the source project and target project are the same, i.e., Bohrbug and Mandelbug.
However, the source data and target data come from different projects, which means that
data distributions are different (Qin et al. 2018).

Besides, the cross-project bug type prediction well meets the application scenario of
TrAdaBoost. The goal of cross-project bug type prediction is to predict bug types of target
project by using little data of the target project and a large amount of data from the source
project. Due to the difference in distributions between the source and the target domains,
some of the data in the source project may be useful for the target project’s bug type predic-
tion, while some of them may be harmful. TrAdaBoost attempts to adjust the weight of the
source data through experimental iterations to reduce the impact of “bad” source data and
to leverage the impact of “good” source data on improving the target project’s prediction
performance.

Figure 3 shows the training procedure of TrAdaBoost algorithm. Assuming Linux is
the source project and MySQL is the target project, we use Xs and X7 to represent the
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Fig.3 Procedure of TrAdaBoost

sample space of source project and target project, and ¥ = {0, 1} to indicate the set of bug
types. In this study, y = 1 denotes a Bohrbug and y = O represents a Mandelbug. The
boolean function g is the prediction function from the sample space X (X = Xr U Xg) to
the category label Y, i.e., the classification algorithm of bug types. Training data 7 C
{X x Y} contains two parts of labeled data Ts = {(xl.S, g(xl.S))} and T = {(xiT, g(xiT))},
where xis € Xs (i =1,..,n) and xl.T € Xr,(i = 1,...,m). The number of labeled bug
reports in Linux and MySQL is denoted by n and m, respectively. Test data, i.e., unlabeled
data in MySQL, is § = (xiS), where xiS € X; (i =1, ..., k). k is the number of unlabeled
bugs.

For each iteration (total number is N), if the training sample of Linux is predicted
wrongly, the sample is likely to conflict with training data of MySQL. Then, the misclassi-
fied Linux training sample will be assigned a smaller weight wis by multiplying the weight
,BS (ﬂs € (0, 1]), which means less impact on the learning process. After several iterations,
the Linux training samples that match the MySQL data will have more weight. In contrast,
Linux training samples that differ from MySQL’s data will have less weight. Samples with
larger training weights can help train better classifiers.

3 Experiment setups

3.1 Datasets

Table 1 shows the datasets of four projects in our experiments, including Linux, MySQL,
HTTPD, and AXIS. The dataset of Linux is from Xiao et al. (2017), containing 2444 BOHs

and 1590 MANS, while the datasets of MySQL, HTTPD, and AXIS are from Cotroneo et al.
(2013). Since the number of bug reports in Linux is about 10 times more than that of other
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Table 1 Bug report dataset

Project No. of BOH No. of MAN No. of reports
Linux 2444 1590 4034
MySQL 125 84 209

HTTPD 116 25 141

AXIS 184 15 199

projects, Linux is mainly used as a source project. In this study, 20% of bug reports of the
target project and all the bug reports from the source project are used as training data, while
the remaining 80% of the target project data are used as test data.

3.2 Classifiers

To compare the performance of different classifiers, three classifiers, i.e., Gradient Boosting
Classifier (GBC), SGDClassifier (SGD), and AdaBoostClassifier (ABC), are used in the
proposed framework. The classifiers are implemented by scikit-learn, a python module that
integrates several state-of-the-art machine learning algorithms (Pedregosa et al. 2011). In
the following, we briefly introduce these classifiers.

1. Gradient Boosting Classifier (GBC): Gradient Tree Boosting is an ensemble algo-
rithm. Its motivation is to combine several weak models to produce a powerful ensemble
(Friedman 2001). As any other boosting methods, it constructs models in a phased
manner and generalizes them by allowing the optimization of arbitrary differential loss
functions.

2. SGDClassifier (SGD): Stochastic gradient descent is a very simple and effective
method for fitting linear models (e.g., support vector machine and logistic regression;
Zadrozny and Elkan 2002), The model fitted here is the support vector machine, which
is very useful when dealing with large data and large feature quantities and has been
applied to solve large-scale and sparse machine learning problems in the fields of text
classification and natural language processing.

3. AdaBoostClassifier (ABC): AdaBoost is a meta-estimator, which first fits the classi-
fier on the original dataset and then fits other copies of the classifier on the same dataset.
Since the weights of the instances misclassified are adjusted, the subsequent classifiers
focus more on difficult cases (Freund and Schapire 1997).

3.3 Evaluation metrics

In this study, we use precision, recall, and F-measure to evaluate the performance of classi-
fiers. These metrics are calculated based on a confusion matrix which records correctly and
incorrectly predicted instances for each class (Sokolova et al. 2006). Table 2 shows a binary
classification confusion matrix of BOH/MAN. The column of the matrix records the pre-
dicted label of the bug reports and the row of the matrix provides the actual label of the bug
reports. A cell in a matrix represents the number of bug reports for a particular predicted
label and a specific actual label. In a binary classification confusion matrix, four cells exist,
i.e., a bug report is classified as a BOH and it is indeed a BOH (true positive, T P); a bug
report is classified as a BOH but it is actually a MAN (false positive, F' P); a bug report is
actually a BOH but it is classified as a MAN (false negative, F'N); a bug report is classified
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Table 2 Confusion matrix for

binary classification Predicted: BOH Predicted: MAN
Actual: BOH True positive (T P) False negative (FN)
Actual: MAN False positive (F P) True negative (T N)

as a MAN and it is indeed a MAN (true negative, T N). The calculation of the selected
metrics is presented as follows.

1. Precision: It estimates the proportion of a class predicted correctly over all instances
which are classified into this class. The metric can assess the predictive power of the
algorithm. The definition is as follows:

.. TP 3)
recision = ———
P TP+ FP
2. Recall: Recall measures the portion of correctly predicted members over all actual
class members. Recall is calculated as:

TP
recall = ———— “)
TP+FN

3. F-Measure: F-Measure is a composite measure that combines both precision and
recall, which evaluates if an increase in precision outweighs a reduction in recall. If preci-
sion and recall are equally important, F-measure can be used. The formula of F-measure
is:

2 x precision x recall

F — measure = — (5)
precision + recall

4 Results and analysis
4.1 The impact of transfer learning on cross-project bug type prediction

In this part, we analyze the effect of transfer learning on cross-project bug type prediction.
The source project used in this part is Linux, while the target projects are MySQL, HTTPD,
and AXIS. Figure 4 shows the F-measure of cross-project bug type prediction with transfer
learning and without transfer learning. For all the three target projects, the F'-measure of the
prediction with transfer learning outperforms that without transfer learning. In addition, the
classifiers have a different impact on the prediction results, as shown in Table 3.

For the prediction with transfer learning, GBC classifier has the best performance on all
the three target projects. For HTTPD, MySQL, and AXIS projects, the prediction results,
i.e., (precision, recall, F-measure), are (0.812, 0.861, 0.832), (0.668, 0.732, 0.686), and
(0.927, 0.956, 0.939), respectively.

Besides, the improvement of prediction performance obtained by transfer learning is
different in classifiers. SGD classifier has the greatest improvement of prediction results for
HTTPD and AXIS projects, i.e., (10.28%, 24.22%, 18.49%) and (7.97%, 19.48%, 13.81%),
respectively. For the MySQL project, GBC classifier achieves the greatest improvements
after using transfer learning, i.e., (16.78%, 23.03%, 18.89%).
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Fig. 4 Transferring Linux to predict bug types for MySQL, HTTPD and AXIS. a Linux—HTTPD, b
Linux—MySQL, and ¢ Linux— AXIS

Finding no. 1 The results of cross-project bug type prediction using transfer learning are
better than those without transfer learning, and the prediction results obtained by the GBC
classifier are the best.

Implication Ir is practical to use the proposed framework to perform the cross-project
bug type prediction. Since GBC classifier achieves the best prediction performance, it is
suggested to use GBC classifier for the cross-project bug type prediction.

4.2 The impact of different source projects

To further analyze the impact of transfer learning between different projects, we con-
duct experiments by exchanging the source and target projects. Table 4 shows six pairs of
source and target projects. These pairs are generated from HTTPD, MySQL, and AXIS
projects, e.g., MySQL—HTTPD and AXIS—HTTPD. The predicted results are shown in
Tables 35, 6, and 7, respectively.

As depicted in Table 5, using MySQL or AXIS projects as the source project improve the
prediction results of the HTTPD project, compared with prediction without transfer learn-
ing. The average improvements of prediction results, i.e., (precision, recall, F-measure),
are (6.36%, 8.57%, 8.42%) and (10.93%, 16.87%, 15.01%), respectively. In addition, the
prediction results obtained by using AXIS are better than those using MySQL. The phe-
nomenon means that AXIS is more suitable as the source project than MySQL when
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Table 3 Transferring Linux to predict bug types of HTTPD/MySQL/AXIS
Classifier Transfer or not Precision Recall F-Measure
HTTPD GBC Without transfer 0.755 0.777 0.759
Transfer 0.812 0.861 0.832
Impro. 7.55% 10.81% 9.62%
SGD Without transfer 0.652 0.640 0.611
Transfer 0.719 0.795 0.724
Impro. 10.28% 24.22% 18.49%
ABC Without transfer 0.761 0.787 0.768
Transfer 0.793 0.806 0.797
Impro. 4.20% 2.41% 3.78%
MySQL GBC Without transfer 0.572 0.595 0.577
Transfer 0.668 0.732 0.686
Impro. 16.78% 23.03% 18.89%
SGD Without transfer 0.610 0.613 0.608
Transfer 0.586 0.764 0.637
Impro. —3.93% 24.63% 4.77%
ABC Without transfer 0.603 0.642 0.613
Transfer 0.646 0.677 0.652
Impro. 7.13% 5.45% 6.36%
AXIS GBC Without transfer 0.883 0.885 0.881
Transfer 0.927 0.956 0.939
Impro. 4.98% 8.02% 6.58%
SGD Without transfer 0.765 0.729 0.717
Transfer 0.826 0.871 0.816
Impro. 7.97% 19.48% 13.81%
ABC Without transfer 0.894 0.909 0.899
Transfer 0.917 0.929 0.921
Impro. 2.57% 2.20% 2.45%

Italicized entries indicate that using transfer learning improves the predictions and how much is improved
compared to not using transfer learning

Table 4 Pair setting

Pair no. Source project Target project
1 MySQL HTTPD

2 AXIS

3 HTTPD MySQL

4 AXIS

5 HTTPD AXIS

6 MySQL
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Table 5 Transferring MySQL/AXIS to predict bug types of HTTPD

MySQL—HTTPD AXIS—HTTPD

Classifier GBC SGD ABC Avg. GBC SGD ABC Avg.
Precision 0.777 0.769 0.762 0.769 0.827 0.761 0.819 0.802
Impro. 291%  17.94%  0.13% 6.36%  9.54% 16.72%  7.62% 10.93%
Recall 0.792 0.832 0.770 0.798 0.899 0.823 0.855 0.859
Impro. 1.93%  30% 24.84% 857%  15.70%  28.59%  39.93%  16.87%
F-Measure  0.779 0.782 0.759 0.773 0.856 0.771 0.833 0.82
Impro. 2.64%  27.99%  —117%  8.42% 12.78%  26.19%  8.46% 15.01%

Italicized entries indicate that using transfer learning improves the predictions and how much is improved
compared to not using transfer learning

predicting bug types of HTTPD. Moreover, regarding the evaluation metrics, recall has the
highest average improvement when using transfer learning.

Table 6 shows the bug type prediction results of using HTTPD or AXIS as the
source project and MySQL as the target project. The average improvements are (2.18%,
14.59%, 6.34%) and (2.18%, 11.67%, 5.17%), respectively. The improvements of recall and
F-measure are obvious when using transfer learning. For example, the recall and F-measure
of MySQL prediction are improved by up to 19.83% and 12.65%, respectively.

For the target project of AXIS, the prediction results using HTTPD or MySQL are
presented in Table 7. It can be observed that the improvements achieved by these two
source projects are similar. The average improvements, i.e., (precision, recall, F-measure),
is (5.55%, 7.85%, 71.57%) and (5.19%, 7.37%, 7.21%), respectively. In addition, using SGD
classifier has the greatest improvement of prediction results.

Finding no. 2 For the bug type prediction of HTTPD, using AXIS as the source project is
better than using MySQL. In addition, GBC obtains the best prediction results.

Finding no. 3 For the bug type prediction of MySQL, the results obtained by using HTTPD

and/or as the source project are similar. Besides, GBC classifier performs better than SGD
and ABC classifiers.

Table 6 Transferring HTTPD/AXIS to predict the bug type of MySQL

HTTPD—MySQL AXIS—MySQL

Classifier GBC SGD ABC Avg. GBC SGD ABC Avg.
Precision 0.621 0.577 0.625 0.608 0.626 0.576 0.623 0.608
Impro. 8.57% —541%  3.65%  2.18% 9.44% —557%  3.32%  2.18%
Recall 0.713 0.706 0.703 0.707 0.708 0.712 0.648 0.689
Impro. 19.83%  15.17% 9.50%  14.59%  18.99%  16.15% 0.93%  11.67%
F-Measure  0.649 0.612 0.649 0.637 0.650 0.612 0.628 0.630
Impro. 12.48%  0.66% 587%  6.34% 12.65%  0.66% 2.45%  5.17%

Italicized entries indicate that using transfer learning improves the predictions and how much is improved
compared to not using transfer learning
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Table 7 Transferring HTTPD/MySQL to predict the bug type of AXIS

HTTPD— AXIS MySQL— AXIS

Classifier GBC SGD ABC Avg. GBC SGD ABC Avg.
Precision 0.884 0.876 0.921 0.894 0.897 0.880 0.895 0.891
Impro. 0.11% 14.51% 3.14% 5.55% 1.59% 15.03% 0.22% 5.19%
Recall 0.884 0.896 0.942 0.907 0.903 0.906 0.900 0.903
Impro. —0.11% 23.93% 3.63% 7.85% 2.03% 25.31% —0.99% 7.37%
F-Measure 0.882 0.874 0.929 0.895 0.899 0.882 0.895 0.892
Impro. 0.11% 21.90% 3.45% 7.57% 2.04% 23.01% —0.33% 7.21%

Italicized entries indicate that using transfer learning improves the predictions and how much is improved
compared to not using transfer learning

Finding no. 4 For predicting bug types of AXIS, using HTTPD as the source project with
ABC classifier obtains the best prediction results.

Implications The source projects, as well as the classifiers, have an impact on the predic-
tion results when conducting transfer learning. For HTTPD, it is suggested to use AXIS as
the source project and to use GBC as the classifier. For MySQL, both AXIS and HTTPD are
suitable as the source project, while the classifier is recommended to use GBC. In prediction
bug types of AXIS, it is suggested to use the ABC classifier and the source project HTTPD.

4.3 The impact of data size of the source project

To answer RQ3, the impact of the number of bug reports from the source project is analyzed
in this part. We use Linux as the source project and randomly select a portion sample (i.e.,
10%, 20%, ... , 100%) of the total number of bug reports from Linux to perform the exper-
iments. For each experiment, MySQL, HTTPD, and AXIS are taken as the target project.
Figure 5 shows the prediction results. For HTTPD and MySQL, the prediction results (i.e.,
precision, recall, and F-measure) grow with an increasing portion of data from the source
project. For the AXIS project, the recall metric increases, while the precision and F-measure
fluctuate.

Findingno.5 Increasing the amount of data from the source project is capable of improving
the prediction results of the target project.

Implication When performing cross-project bug type prediction based on transfer learning,

to improve the prediction performance of the target project, it is suggested to increase the
data size of the source project.

5 Threats to validity
5.1 Internal threats

Threats to internal validity come from experiments, i.e., the data sampling of training and
test data. To reduce the randomness of the experiments, the final results in this paper are
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Fig. 5 The impact of the data size of the source project. a Linux—HTTPD, b Linux—MySQL, and ¢
Linux— AXIS

obtained by averaging results from a total of 1000 times of experiments. A second threat is
about the classifiers used for prediction. Although three different classifiers are used in the
experiments, the prediction results may still be different when using other classifiers. The
last threat comes from the mislabeling of bug reports. Although the classification results
have been carefully checked, errors may still exist in the labeled data.

5.2 External threats

Threats to external validity come from the generalization of our results. Although we
have conducted experiments on four popular open-source projects, i.e., Linux, MySQL,
AXIS, and HTTPD, we do not try to claim our findings or conclusions reflect all software.
The proposed framework is applicable for the prediction of other types of bugs, such as
environmental-dependent bugs (Cavezza et al. 2014) and concurrency bugs (Asadollah et al.
2017).
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6 Related work

Bugs are a major factor threatening the reliability of software systems (Qin et al. 2017;
Qiao et al. 2018; Xiao et al. 2019). Over the past 10 years, researchers have conducted
extensive studies on the prediction of software bugs from several aspects, such as predicting
bug-fixing time (Bhattacharya and Neamtiu 2011), predicting bug locations (Zhang et al.
2018; Xu et al. 2019), and predicting bug severities (Kim et al. 2007). To effectively identify
bugs and reduce maintenance costs of software systems, several statistical models have
been developed (D’ Ambros et al. 2010). Typically, these models are constructed based on
historical information and they require a large amount of labeled data.

In 2008, Antoniol et al. (2008) proposed the problem of bug type classification, sep-
arating the real defects from the non-real defects. In this paper, they constructed three
classifiers, including decision trees, naive Bayes, and logistic regression, to classify real
defects from other issues (such as enhancement and reconstruction problems). Pingclasai
et al. (2013) proposed a topic modeling method using three classifiers, i.e., decision tree,
naive Bayes, and logistic regression, to classify bugs. It is found that naive Bayes is the most
effective classifier. In addition, statistical and machine learning techniques were used to
classify concurrency bugs (Padberg et al. 2013). Moreover, several studies conducted clas-
sification based on the triggering conditions of bugs. Frattini et al. (2016) classified bugs
into environment-dependent defects and load-dependent defects based on the reproducibil-
ity characteristics of defects using naive Bayes and Bayesian network. Xia et al. (2014) used
Bayes multinomial as the classifier for the type prediction of Bohrbugs and Mandelbugs.

Although machine learning methodologies have achieved significant success in knowl-
edge engineering work (Wu et al. 2008; Yang and Wu 2006), many machine learning
methods work well only under a common assumption, i.e., the training and test data are
drawn from the same feature space and the same distribution. When the assumption does not
hold, traditional classification methods may perform worse. Transfer learning techniques
have been applied successfully in many real-world applications. Raina et al. (2006) and Dai
et al. (2007a) proposed using transfer learning techniques to learn text data cross domains,
respectively. Transfer learning method SCL was used to solve NLP problems and sentiment
classification problems in the work (Blitzer et al. 2006).

In addition, transfer learning has been applied to software bug prediction. For exam-
ple, Nam et al. (2013) proposed a transfer defect learning approach TCA+ by extending
TCA. Later, Nam and Kim (2015) presented a heterogeneous defect prediction method to
match up different metrics in different projects. A unified approach was provided for both
cross-project and within-project software defect predictions (Wu et al. 2018). Recently, Qin
et al. (2018) proposed TLAP approach to perform aging-related bug prediction using a
cross-project model. In their work, TCA was conducted to reduce the distribution difference
between the training project and the target project. However, the purpose of existing work
is to predict defective modules, while our work is aiming to predict the types of bugs using
bug reports.

7 Conclusion and discussion
In this paper, we proposed a framework of cross-project bug type prediction based on a
transfer learning method, TrAdaBoost. In the framework, labeled bug reports of a project

were used to predict bug types of another project, which has insufficient labeled data to train
the classification model. Four projects, i.e., Linux, MySQL, HTTPD, and AXIS, were used

@ Springer



54 Software Quality Journal (2020) 28:39-57

to test the framework. The experimental results showed that the framework can improve the
results of cross-project bug type prediction. Moreover, the impact factors of the prediction
results were investigated, including the pair of source and target projects, and the data size
of the source project.

In our future work, we plan to combine source code metrics (e.g., program size metrics,
McCabe complexity metrics, and Halstead metrics) with bug report features to improve the
prediction results. To extract source code metrics, several program analysis tools can be
used. For example, SVF was developed to do scalable and precise intraprocedural static
value-flow analysis for C programs (Sui and Xue 2016). SUPA, proposed by Sui and Xue
(2018), focuses on performing strong updates on-demand flow and context-sensitively for
analyzing C and C++ programs. There are also tools for analyzing Java and python programs
(Feng et al. 2018; Gharibi et al. 2018).
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