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Abstract—Regression bugs are a type of bugs that cause a
feature of software that worked correctly but stop working after a
certain software commit. This paper presents a systematic study of
regression bug chains, an important but unexplored phenomenon
of regression bugs. Our paper is based on the observation that a
commit c1, which fixes a regression bug b1, may accidentally intro-
duce another regression bug b2. Likewise, commit c2 repairing b2
may cause another regression bug b3, resulting in a bug chain, i.e.,
b1 → c1 → b2 → c2 → b3. We have conducted a large-scale
study by collecting 1579 regression bugs and 2630 commits from
57 Linux versions (from 2.6.12 to 4.9). The relationships between
regression bugs and commits are modeled as a directed bipartite
network. Our major contributions and findings are fourfold: 1)
a novel concept of regression bug chains and their formulation;
2) compared to an isolated regression bug, a bug on a regression
bug chain is much more difficult to repair, costing 2.4× more fixing
time, involving 1.3× more developers and 2.8× more comments;
3) 85.8% of bugs on the chains in Linux reside in Drivers, ACPI,
Platform Specific/Hardware, and Power Management; and 4) 83%
of the chains affect only a single Linux subsystem, while 68% of
the chains propagate across Linux versions.

Index Terms—Bipartite network, bug-fixing commit (BFC), bug-
introducing commit (BIC), Linux, regression bug, regression bug
chain (RBC).

I. INTRODUCTION

IN SOFTWARE repositories, bug reports in bug tracking sys-
tems and commits in version control systems are widely uti-

lized and investigated in software engineering research, since
they provide valuable historical information of a software
project. Mining bug reports and commits is very beneficial
for evaluating and understanding software maintenance efforts,
such as recovering links between bugs and commits [1]–[7],
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risk measurement [8]–[10], understanding [11]–[15], detecting
[16]–[18], and predicting bugs [19], [20].

Regression bugs are a common type of bugs that lead to a
feature of software that worked correctly but stop working after a
certain software commit [22]. A regression bug can be caused by
a commit fixing an existing bug or an implementation for a new
system feature. For example, Linux regression bug ID-51881
was introduced by commit ID-65fe1f0f,1 whose purpose is to
implement a new feature for the SATA device. Previous studies
found that regression bugs account for a significant proportion
(50.1%) of all classified bugs in Linux [15]. In the Google
Chromium project [23], regression bugs occupy about 51.1% of
all labeled bugs.

The introduction of a regression bug has close relations with
commits. Based on the relationships between bugs and com-
mits, a commit can have one or more of the following three
properties, i.e., bug-fixing, bug-introducing, and bug-irrelevant.
A commit whose code changes repair a bug is called a bug-fixing
commit (BFC), while a commit whose code changes inadver-
tently introduce a bug into the existing project is regarded as a
bug-introducing commit (BIC). A bug-irrelevant commit does
not fix or introduce any bugs. When inspecting Linux regression
bug reports, we found an interesting type of commit, i.e., hy-
brid commit, which has both the bug-fixing and bug-introducing
properties. For example, a hybrid commit c1 fixes a regression
bug b1 but introduces another regression bug b2, likewise a new
commit c2 that repairs b2 but also causes a new regression bug
b3. These special commits together with the bugs can form a
regression bug chain (RBC), i.e., b1 → c1 → b2 → c2 → b3.
Note that an RBC contains at least two regression bugs and one
hybrid commit.

Fig. 1 presents boxplots by comparing the maintenance cost
of the bugs on RBCs with that of isolated regression bugs (not
on chains) in Linux. All the isolated regression bugs and the
first bugs on RBCs are extracted from Linux version 2.6.24.
The average fixing time of a bug on an RBC is equal to the ratio
of the time difference between the reported time of the first bug
and the resolved time of the last bug to the number of related
bugs on the RBC, while the fixing time of an isolated regression
bug is defined as the time difference between the reported time
and the resolved time of the bug.

Compared to an isolated regression bug, fixing a bug on RBCs
is much more costly. The average fixing time of a bug on the

1Following the common practice, we used the first eight digits to denote
commit IDs in this paper.
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Fig. 1. Boxplots comparing the fixing efforts of the bugs on RBCs with
isolated regression bugs. (a) Fixing time, (b) number of developers involved,
and (c) number of comments made in bug reports when discovering and finding
regression bugs. Note that the results are statistically significant (tested by the
Mann–Whitney U test [21], α = 0.05).

RBCs is about 2.4 times longer than that of fixing an isolated
regression bug. In addition, fixing a bug on the RBCs involves
1.3× more developers and 2.8× more comments than fixing an
isolated regression bug. The efforts made in fixing RBCs sig-
nificantly increase the cost of software maintenance. However,
it is an unexplored research in discovering and understanding
the RBCs. It is interesting to formulate, summarize, and under-
stand the RBCs so that we can provide more useful insights for
programmers to reduce the maintenance cost by fixing this type
of bugs.

This paper proposes a new method to model the bug–commit
relationships as a directed bipartite network for analyzing RBCs.
The formal definition of the RBC and its related network param-
eters are given based on the network. The study is conducted
using 1579 regression bugs of the Linux kernel from 57 ver-
sions and 2630 commits (i.e., BICs and BFCs) collected from
the Linux kernel Git repository. This paper mainly focuses on
answering the following three research questions.

RQ1: How to discover and formulate the RBCs in large-scale
software systems (e.g., Linux)? In this research question, we
investigate how to recover RBCs from bug reports and commits
in a large-scale Linux system. More specifically, we will explore
the severity and the number of the RBCs and their related bugs
and commits.

RQ2: What are the characteristics of RBCs? To have a better
understanding of RBCs, it is necessary to explore their char-
acteristics. In this research question, the path lengths of RBCs
and their distributions and the features of bugs on RBCs will be
investigated. We will also study whether bugs in an RBC would
propagate across Linux subsystems or versions.

RQ3: What are the patterns of bug–commit relationships
for regression bugs? We will investigate the bug–commit re-
lationships and the patterns of BICs and BFCs, which may
reflect the complexity of bugs. For example, a bug can be
introduced by one BIC and fixed by one BFC or caused by
two BICs and solved by one BFC. We will also investigate the

Fig. 2. Real-world example of the RBC in Linux.

correlation between patterns and the complexity of regression
bugs.

This paper makes the following main contributions.
1) To the best of our knowledge, it is the first work to explore

the RBCs in Linux and also the first to model the relation-
ships between bugs and commits as a directed bipartite
network.

2) Compared to an isolated regression bug, a bug on an RBC
is much more difficult to find and repair, costing 2.4×
more fixing time, involving 1.3× more developers and
2.8× more comments for discussing and finding the bug.

3) For 71% of the RBCs, the first bug is the most difficult to
be fixed.

4) For all the RBCs in Linux, 85.8% of bugs relate to
Drivers, ACPI, Platform Specific/Hardware, and Power
Management.

5) For the developers maintaining more than one subsystem,
its proportion for fixing the bugs on RBCs is about 2.3×
higher than that for fixing the isolated regression bugs.

6) 83% of RBCs affect only a single Linux subsystem. Bugs
on 68% of RBCs are propagated across Linux versions.

The rest of this paper is organized as follows. Section II de-
scribes a motivating example of a real-world RBC. Section III
presents the directed bipartite network approach for modeling
RBCs. Section IV introduces data collection and aggregation.
Section V provides the analytical results for three research
questions. Section VI discusses the threats to validity, while
Section VII introduces related work. Finally, Section VIII con-
cludes this paper.

II. MOTIVATING EXAMPLE OF RBCS

We show a real-world RBC in Linux as our motivating ex-
ample. Fig. 2 depicts the RBC extracted from Linux version
2.6.32 to version 2.6.35. This RBC is related to the graphics
translation table (GTT), which is an input–output memory man-
agement unit used by an accelerated graphics port. It took 290
days to eventually fix this complicated RBC (consisting of three
bugs), since the first bug on the chain is reported in the Bugzilla
of the Linux kernel. The fixing (i.e., commit ID-f1befe71) of
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Fig. 3. Illustration of a bug–commit directed bipartite network.

a regression bug (ID-15733) introduces two more regression
bugs, and nearly 97 days were spent to fix each bug on the
chain. The following is the comment made by the main devel-
oper of the Intel-drm/i915 graphics kernel driver in the reports
of bug ID-15733 and ID-16294:

“I’d like to avoid a regression fix for a regression fix for a regression
fix.”
– Daniel Vetter, main developer of Intel-drm driver

Linux regression bug ID-15733 (“Crash when accessing
nonexistent GTT entries in i915”) was introduced by com-
mit ID-fc619013, which aims to fix the BIOS failures in or-
der to correctly initialize the GTT. The bug was fixed by
commit ID-f1befe71 through restricting GTT mapping to a
valid range on Intel i915 and i945 chipsets. However, the
BFC ID-f1befe71 introduced the regression bug (ID-16294)
due to that the new commit fails to detect GTT size on Intel
i830 chipsets. The bug was later fixed by commit ID-e7b96f28
(“agp/intel: Use the correct mask to detect i830 aperture size”).
Unfortunately, commit ID-e7b96f28 again incorrectly intro-
duced another regression bug (ID-16891), which was finally
resolved by commit ID-e5e408fc (“intel-gtt: fix gtt_total_entries
detection”).

III. BUG–COMMIT DIRECTED BIPARTITE NETWORK

In this section, we first introduce our network modeling ap-
proach for representing and understanding the relations between
bugs and commits on RBCs. Then, we describe the basic ideas
and algorithms to analyze RBCs based on the directed bipartite
network.

A. Network Modeling

Inspired by the real-world RBC in Fig. 2, we proposed the
bug–commit directed bipartite network to model the relations
between bugs and commits. As shown in Fig. 3, the relationships
between bugs and commits are constructed as a directed bipartite
network G =< U, V,E >, where U represents the set of bugs
and V denotes the set of commits. Let n = |U |, m = |V |, and
l = |E|. An edge (u, v) ∈ E is established from bug u to commit
v iff bug u was fixed by commit v. Otherwise, an edge (v, u) ∈ E

is established from commit v to bug u iff bug u was introduced
by commit v. Note that there is no cycle in the directed bipartite
network, since every commit is assigned to a unique ID based
on the time sequence, e.g., a bug can only be connected to a new
BFC even if this commit has the same solution as a previous
one.

B. Basic Concepts

1) Degree: The degree of a node, denoted as k, in a network
represents the number of edges connected to it. There are two
types of degrees of a node in directed networks, i.e., out-degree
kout and in-degree kin. For a bipartite network, the meanings of
the out-degree and in-degree are different for nodes in different
sets, i.e., bugs and commits. Given a bug u, the out-degree
kout(u) represents the number of commits fixing u (BFCs), while
the in-degree kin(u) denotes the number of commits introducing
u (BICs). On the contrary, for a commit v, the out-degree kout(v)
indicates the number of bugs it introduces, whereas in-degree
kin(v) represents the number of bugs it fixes. For example, as
depicted in Fig. 3, kout and kin for bug ui are both 1, while kout

and kin for commit vα are 1 and 0, respectively.
2) Hybrid Node: Given a commit v, if it satisfies kin(v) > 0

and kout(v) > 0, the commit v is named a hybrid node. Let h
denote the number of hybrid nodes in the network. For example,
as shown in Fig. 3, commits vβ and vγ are hybrid nodes. The
hybrid node indicates that the commit fixes an existing bug and
also introduces a new bug.

3) Path and Its Length: Given two nodes x, y (x, y ∈ U ∪
V ), a path P (x, y) of them is defined as a sequence of directed
edges, which connect a sequence of nodes from x to y. The
length L of a path equals the number of edges traversed along
the path. For example, as depicted in Fig. 3, the length L of path
P (vα , vβ ) is 2.

4) Regression Bug Chain: Given two nodes x, y (kin(x) =
0; kout(y) = 0), if L(P (x, y)) ≥ 2 (x ∈ U) or L(P (x, y)) ≥ 3
(x ∈ V ), the path from x to y is called an RBC. For example,
as shown in Fig. 3, there are two RBCs starting from bug uj

and commit vα , respectively. It is noted that an RBC contains at
least one hybrid node and two bugs.

5) RBC Search Algorithm: Fig. 4 presents the RBC search
algorithm, which is based on depth-first search [24]. The RBC
search algorithm starts at a source node s, whose kin(s) = 0,
and records the reachable nodes of s as far as possible along
each branch using the stack V isited. As shown in lines 14–20,
if the reachable node w satisfies kout = 0, and the path from s to
w satisfies the length requirement of the RBC definition, we can
obtain an RBC starting from the source node s to the reachable
node w.

6) Motif: Given a bug u, the motif is defined as the pattern of
the relationship between the bug and its corresponding commits
(i.e., BIC and BFC). The motif for a bug can be determined by
the combination of its in-degrees and out-degrees. For example,
as shown in Fig. 3, bug ui has the one–one relationship motif
(i.e., introduced by one commit and fixed by one commit), while
bug uk has the two–one relationship motif (i.e., introduced by
two commits and fixed by one commits).
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Fig. 4. RBC search algorithm.

TABLE I
DATA SOURCE

IV. DATA COLLECTION AND AGGREGATION

This section presents the details of our data collection and
aggregation, including the data source and the data processing
procedure.

A. Data Source

As shown in Table I, we utilized two types of data, in-
cluding Linux regression bug reports and Linux Git repository
commits.2 The Linux regression bugs are obtained from [15].
In this work, among the 4035 classified bugs, there are 2020 re-
gression bugs. Note that we only investigated bug reports with
the version numbers starting from 2.6.12. The information of
code changes is hard to be obtained before that version because
developers only utilized Git to track code changes since ver-
sion 2.6.12 [25]. As a result, 1907 regression bugs are selected,
which account for 94.4% of all regression bugs. The Linux Git
repository is downloaded from the Linux kernel source tree (also
called upstream tree) using the git clone command. The changes
conducted in Linux development are recorded as commits. In
the following section, we will elaborate on the data processing
procedure, i.e., the extraction of BICs and BFCs.

2[Online]. Available: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git

Fig. 5. Extraction procedure of BICs and BFCs. Step 1: Inspection of BIC
and BFC. Step 2: Validation of upstream commits. Step 3: Recovery of missing
commits.

TABLE II
EXAMPLES OF KEYWORDS FOR THE DETERMINATION OF BICS AND BFCS

B. Data Processing Procedure

To explore the relationships between bugs and commits, we
first extract BICs and BFCs. As depicted in Fig. 5, the extraction
procedure consists of the following three steps.

1) Step 1. Inspection of BICs and BFCs: As shown in Fig. 5,
BICs and BFCs are first inspected in regression bug reports. We
manually performed the inspection through several keywords, as
illustrated in Table II. For regression bug reports, bug reporters
or maintainers tend to describe a BIC as the first bad commit,
the offending commit, or the culprit commit. Under certain situ-
ations, their descriptions may contain keywords “caused by” or
“introduced by” to explain which commit(s) may introduce this
bug. By inspecting these keywords or phrases in bug reports,
we can obtain BICs. Similarly, there also exist several keywords
related to BFCs, such as “fixed by” or “patch upstreamed,” as
shown in Table II. A BFC is usually provided at the last com-
ment of a bug report. It is worth noting that there still exist

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
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several bugs that we cannot determine their BICs or BFCs after
conducting the manual inspection, since these reports did not
provide complete information. The missing commit recovery
process is handled in step 3.

2) Step 2. Validation of Upstream Commits: BICs and BFCs
extracted from bug reports are provided by reporters or main-
tainers. The provided commits may reside in maintainers trees
(i.e., the developer branches of the Linux kernel source tree),
but not the upstream tree. This causes a problem that the commit
IDs are different though the contents are identical, since they
belong to different development trees. For example, the BIC ID
of bug ID-59491 is cd7b304d (x86, range: fix missing merge
during add range). However, the commit ID for the identical
content (i.e., x86, range: fix missing merge during add range) in
the upstream tree is fbe06b7b. Therefore, we should unify the
commit IDs by validating them in the upstream tree to eliminate
the inconsistency of different commit IDs. We wrote a script
based on the git show command to automatically check whether
commits are in the upstream tree. For the development commits
not in the upstream tree, we need to know whether the code
changes of these commits are accepted by the upstream or not.
We searched these commits using their IDs in Google and tried
to find their corresponding code changes, and then, we used the
git log command together with the grep command (with option
-B) to inspect whether these code changes are really committed
in the upstream tree. If the changes of a development commit
cannot be found, we discarded this commit from our collected
dataset. After step 2, all commits are confirmed as upstream
commits, and they can be utilized as input data for Step 3.

3) Step 3. Recovery of Missing Commits: The recovery of
missing commits consists of two subphases, i.e., recovery of
the incomplete BFCs and recovery of the BICs. Because the
recovery of BICs relies on BFCs, the recovery of missing BFCs
should be processed first.

a) Step 3.1. Recovery of Missing BFCs: Missing BFCs
are recovered through searching their bug IDs in Linux Git
repository. For example, the BFC that fixes bug ID-22672 can-
not be found in its report from step 1. Therefore, we used the
git log command together with the grep command (with option
-B) to search the bug ID in the upstream tree to determine which
commit (i.e., ID-47356eb6) fixed this bug. Worse, several bug
reports specify fixing patches without providing fixing commit
IDs. In this case, we searched the patch message in the up-
stream tree to obtain their commit IDs. For example, a fixing
patch entitled “NFS: Fix a hang/infinite loop in nfs_wb_page()”
was provided in bug ID-29062. We used the git log command
together with the grep command (with option -B) to search the
patch message. Finally, we obtained the BFC ID-b8413f98 that
fixes this bug.

b) Step 3.2. Recovery of Missing BICs: We recovered
missing BICs based on a popular approach for identifying bug-
introducing changes, i.e., the SZZ approach [1], which was pro-
posed by Śliwerski, Zimmermann, and Zeller in 2005. The SZZ
approach first inspects BFCs by searching for the bug IDs in the
logs of version control systems (e.g., Git, CVS, and SVN). Once
the BFCs are obtained, the changed lines of code for fixing the
bug are identified. SZZ traces back based on the code history of

Fig. 6. Commits of bug ID-39842. (a) BFC ID-4b00e4b3.
(b) BIC ID-cc406341.

TABLE III
COLLECTED DATA FOR LINUX FROM VERSIONS 2.6.12 TO 4.9

version control systems to find the time when the changed code
was introduced. According to the SZZ approach, we used the git
log command (with options -p -M –follow –stat) together with
the grep command (with option -B) to search for BICs for the
bugs whose BFCs are already available, but the commits that
introduce those bugs are not directly available.

For example, as depicted in Fig. 6(a), the BFC ID-
4b00e4b3 of bug ID-39842 deletes the code “#define
S3_SAVAGE4_SERIES(chip) ((chip > = S3_SAVAGE4) ||
(chip < = S3_PROSAVAGEDDR))” in the file “drivers/video/
savage/savagefb.h.” After conducting SZZ search, it is found
that the deleted line of code was introduced in commit ID-
cc406341, as shown in Fig. 6(b). Note that the SZZ approach
cannot recover a BIC by tracing a BFC, which contains newly
added lines of code, since this code was introduced for the first
time. To ensure the validity of the collected data, we only re-
cover BICs for the bugs, whose BFCs only contain code changes
in a single file. If the code changes of a BFC were conducted in
multiple files, there may have several commits to trace back. It
is difficult to determine which commit is the BIC because the
result produced by the SZZ approach is not guaranteed to be
sound [26]. Moreover, it is unnecessary to conduct step 2 for
the recovered commits, since the recovery of missing commits
is conducted on the upstream tree.

After the extraction of BICs and BFCs, we collected 2630
commits related to 1579 regression bugs for the Linux kernel
from versions 2.6.12 to 4.9, as shown in Table III. Among the
collected commits, there are 1148 BICs and 1542 BFCs. Note
that each bug in the collected data possesses at least one commit.
Finally, we have released our collected datasets found online.3

According to the network modeling approach described in
Section III-A, we constructed a directed bipartite network based
on the collected bugs and commits from Linux version 2.6.12 to

3[Online]. Available: https://guanpingxiao.github.io/data/linux_rgbugs.xlsx
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TABLE IV
NUMBERS AND PROPORTIONS OF RBCS

4.9 shown in Table III. There are 4029 nodes (i.e., 1579 bugs and
2630 commits) and 2872 edges. The average degrees of bugs <
k(u) > and commits < k(v) > are 1.82 and 1.09, respectively.
The result indicates that each bug has 1.82 commits, and each
commit has 1.09 bugs on average. In addition, the number of
hybrid nodes h is 60. Note that all the network calculations
in this study are based on NetworkX,4 a Python package for
analyzing graphs and networks.

V. ANALYSIS

This section presents the analytical results of our three
research questions in terms of findings and implications.

A. RQ1: How to Discover and Formulate the RBCs in
Large-Scale Software Systems (e.g., Linux)?

After performing the RBC search algorithm provided in
Section III on the constructed directed bipartite network, we
obtained the numbers and the proportions for RBCs shown in
Table IV. The number of hybrid nodes (i.e., a commit is both
a bug-fixing and BIC) is 60. Although the hybrid nodes only
account for 2.3% of all commits, they introduce 100 RBCs, and
the number of related bugs and commits is 133 and 168, respec-
tively. The proportions of the bugs and commits on the RBCs
over all the regression bugs and commits are 8.4% and 6.4%,
respectively.

In the Linux Bugzilla, a bug is reported by a user or developer
through a custom drop-down field in the reporting page specify-
ing whether a bug is a regression bug. A reported regression bug
is then further confirmed by developers. By carefully analyzing
the reports of the bugs on RBCs, most of the regression bugs
are found after installing system updates, e.g., introducing new
system features and/or new BFCs. An abnormal functionality
of devices or failures occurred while the system using these
new updates. In addition, to further analyze the causes of the
bugs on RBCs, we manually examine the BFCs of RBC bugs
(i.e., 133 bugs). It is found that 73.7% of the bugs on RBCs
are functional bugs, while the rest of bugs are related to con-
currency bugs (14.3%) and memory-related bugs (12.0%). For
the functional bugs, i.e., the causes relate to the implementa-
tion of specific functionalities (e.g., device drivers), the high
proportion is due to the lack of regression test cases to cover
the code changes. Given limited test inputs, it is hard for de-
velopers to validate a new commit that can work correctly on
all related hardware platforms. For example, the fixing commit
ID-1a7c618a of bug ID-12302 adds the functionality to support
a specific kind of BIOSes (Asus Laptops). For the concurrency
bugs (e.g., data race: bug ID-15819, deadlock: bug ID-14924)

4[Online]. Available: https://networkx.github.io/

Fig. 7. Distributions of average fixing time of the bugs on RBCs using two
calculation formulas.

and memory-related bugs (e.g., null pointer dereference: bug
ID-14030, memory leak: bug ID-13518), it is useful to apply
some static code analysis tools for detecting these types of bugs
[27]–[29].

To understand the complexity of RBCs, we measured the
average fixing time of the bugs on RBCs using two methods.
The first method is calculated as follows:

< tfixing >= (dbn

resolved − db1
reported)/n (1)

where dbn

resolved and db1
reported represent the resolved date of the last

bug bn and the reported date of the first bug b1 on the chain,
respectively, and n is the number of bugs on the chain. In this
formula, the gaps between the resolved date of bug bi and the
reported date of bug bi+1 are included in the average fixing time.
In order to analyze the impact of the gaps, we defined another
calculation method

< tfixing >=
n∑

i=1

(dbi

resolved − dbi

reported)/n. (2)

Fig. 7 shows the distributions of average fixing time of the
bugs on RBCs using formulas (1) and (2). The result was tested
using the Mann–Whitney U test [21] with a null hypothesis that
the times calculated by the two formulas have similar values.
After performing the test, we obtained p = 0.159, which is
larger than the given significance level of α = 0.05. Therefore,
we cannot reject the hypothesis. The difference in the mean
values in Fig. 7 is negligible, i.e., the mean value of the average
fixing time calculated by formula (1) is only 5.7% longer than the
mean value from formula (2). The average fixing time calculated
by the two formulas is very similar. This is because that the
Linux kernel is one of the most popular open-source software
with a large community consisting of many active users and
developers. The side effects of a BFC, i.e., introducing new
bugs, are often quickly observed by users and/or developers.
We used the first formula, which is more intuitive, to calculate
the average fixing time of the bugs on RBCs in this study (e.g.,
Fig. 1).

https://networkx.github.io/
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TABLE V
LENGTHS OF RBCS

Although the proportion of the bugs on the RBCs is not very
high, these types of bugs are very hard to repair. For example,
the repairing time of RBCs occupies 43.6% of the total fixing
time of all regression bugs in Linux 2.6.24, which significantly
increases the total maintenance efforts.

Moreover, we have investigated the individual fixing time of
each bug on an RBC to understand which bug is more “difficult”
to be fixed. We defined the difference of the fixing time as
ΔF = t

bi + 1
fixing − tbi

fixing. It is found that for 71% of RBCs, the first
bug is the most difficult to be fixed.

To discuss a regression bug’s “latency,” we have also collected
the time from the moment a bug is reported until it receives
its first comment. It is found that the average time of the first
comment for RBC bugs is 6.0 days, while the average time of the
first comment for isolated regression bugs is 5.8 days. However,
the result is not statistically significant, which was tested by the
Mann–Whitney U test [21] with a null hypothesis that the times
of the first comments for RBCs bugs and isolated regression
bugs have similar values.

Finding #1: The numbers of RBCs, related bugs, and
commits are 100, 133, and 168, respectively. The related
bugs and commits account for 8.4% and 6.4% over all
bugs and commits in the directed bipartite network.

Finding #2: For 71% of RBCs, the first bug is the most
difficult to be fixed.

Implication: The efforts in fixing Linux RBCs are
nonnegligible, and it is also interesting to investigate the
characteristics of RBCs in other software systems. In
addition, developers should pay more attention to the bugs
that are difficult to fix, as their fixing commits are likely to
introduce new bugs.

B. RQ2: What are the Characteristics of RBCs?

We have investigated the characteristics of RBCs from four
aspects, including the lengths of RBCs, the distribution of the
bugs on RBCs across Linux subsystems, bug propagation across
Linux subsystems and/or versions, and the largest weakly con-
nected components in the directed bipartite network.

1) Lengths of RBCs: We have conducted a statistic of the
lengths of RBCs, as shown in Table V.

It can be observed that the average length of RBCs is 3.6,
while the shortest and the longest lengths of RBCs are 3 and 6,
respectively. Note that if both the BIC and the BFC of a bug can
be found, the length L of an RBC satisfies L = 2n, where n is
the number of related bugs on the chain. In Table V, there are

Fig. 8. Distribution of the bugs on RBCs across Linux subsystems.

50 out of 100 RBCs whose lengths are 3, and 45 RBCs whose
lengths are 4. In addition, there are five chains whose lengths
are 6. The longer an RBC is, the more efforts developers take
when fixing the RBC.

Finding #3: The length of RBCs is from 3 to 6. In addition,
the lengths of 50% of RBCs are 3 and the lengths of 45% of
RBCs are 4.

Implication: Understanding the relations between bugs
and commits is helpful for understanding a software project
and reducing its maintenance cost. Based on the proposed
directed bipartite network, the lengths of RBCs can be
utilized to measure the effectiveness and the maintenance
efforts in bug-fixing processes. If the first bug on an RBC is
fixed in a low quality, it is likely to produce a longer RBC.

2) Distribution of Bugs on RBCs Across Linux Subsystems:
We have investigated the distribution of the bugs on RBCs across
Linux subsystems, as shown in Fig. 8.

We observed that bugs related to Drivers, ACPI, Platform
Specific/Hardware, and Power Management occupy 85.8% of
all bugs on RBCs. Note that these four subsystems are closely
related to device drivers and architecture platforms. This in-
dicates that bugs related to these subsystems are more likely
to appear on RBCs. According to the study [30], the number
of functions in the drivers directory of the Linux source code
accounts for approximately half of all functions in the Linux
source code. The fast growing of various devices and platforms
requires frequent software development iterations and system
updates. Updating code in a driver-related software component
in Linux tends to be more error-prone, and many driver-related
parts are likely written by less experienced software developers,
making new patches that fix existing bugs but introducing new
bugs. Therefore, for RBCs in Linux, the high proportion of bugs
in these subsystems is reasonable.

To further validate the result of the distribution of the bugs on
RBCs across Linux subsystems, we calculated statistics of the
locations, where the bugs are fixed in the BFCs for RBCs, as
shown in Fig. 9. It can be observed that 92.4% of the bugs on the
chains are fixed in the drivers and arch directories. The source
code of Drivers, ACPI, and Power Management mainly lo-
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Fig. 9. Distribution of the bugs on RBCs across locations of the Linux source
code.

Fig. 10. Developer distributions of subsystems.

cates in the drivers directory, while the source code of Platform
Specific/Hardware mainly locates in the arch directory. Thus,
the distribution of locations where the bugs are fixed is consis-
tent with the result in Fig. 8.

We have investigated the relationships between RBCs and
the developers of these subsystems. To obtain distributions of
developers of different subsystems, we have performed statistics
of bug assignees, i.e., persons in charge of resolving bugs, based
on 1579 collected bug reports. Fig. 10 shows the distributions
of the developers of the eight subsystems containing RBCs.
Note that the number of bugs in these subsystems accounts for
91.6% of all collected bugs. Since Linux subsystems have tight
coupling relationships [31], it can be observed from Fig. 10 that
around 25–65% of the total developers work on more than one
subsystem with some experienced developers work cross seven
subsystems.

Moreover, Fig. 11 depicts the proportions of developer dis-
tributions of isolated regression bugs and RBC bugs. For the
developers maintaining more than one subsystem, its proportion
for fixing RBC bugs is about 2.3× higher than that for fixing
isolated regression bugs. The result indicates that the bugs on
RBCs require more experienced developers, i.e., the ones who
are familiar with more than one subsystem.

Fig. 11. Proportions of developer distributions for the isolated and RBC bugs.

Fig. 12. Illustration of a bug propagating on RBCs. (a) Across Linux subsys-
tems. (b) Across Linux versions: the major version numbers of the two bugs are
different.

Finding #4: Bugs related to Drivers, ACPI, Platform
Specific/Hardware, and Power Management are likely to
appear on RBCs. For all the RBCs of Linux, 85.8% of bugs
relate to Drivers, ACPI, Platform Specific/Hardware, and
Power Management. 92.4% of the bugs on the RBCs are
fixed in the drivers and arch directories of the Linux source
code.

Finding #5: For the developers maintaining more than one
subsystem, its proportion for fixing RBC bugs is about
2.3× higher than that for fixing isolated regression bugs.

Implication: For bugs related to Drivers, ACPI, Platform
Specific/Hardware, and Power Management, it is suggested
to conduct more regression testing before releasing their
fixes. For the bugs that have impacts on several
subsystems, it is suggested to first analyze the closely
related subsystems.

3) RBC Bugs Propagation Across Linux Subsystems or
Versions: We have investigated the propagation of the bugs
on an RBC across different Linux subsystems or versions. As
the example presented in Fig. 12(a), the affected subsystems of
bugs are different, which clearly indicates that bugs on RBCs are
propagated across subsystems. Similarly, as shown in Fig. 12(b),
since the versions of bugs have different major version numbers,
bugs on the RBC propagate across versions. According to the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIAO et al.: EMPIRICAL STUDY OF REGRESSION BUG CHAINS IN LINUX 9

TABLE VI
BUG PROPAGATING ACROSS LINUX SUBSYSTEMS OR VERSIONS ON RBCS

Fig. 13. Version interval of the bugs on RBCs having bug propagation.

Linux version numbering method [30], [32], the third digit rep-
resents the major version number from versions 2.6.11 to 2.6.39,
while the second digit denotes the major version number from
version 3.0. For example, version 2.6.28 is a major version,
whereas version 2.6.28.7 is a minor version of 2.6.28. Table VI
shows our investigation results.

There are 83 RBCs on which the bugs are not propagated
across subsystems. We can draw a conclusion that most of the
RBCs affect a single subsystem. However, there are 68 out of 100
RBCs, whose bugs propagate across versions. The result implies
that more than two-thirds (i.e., 68%) of RBCs are exposed in
later major Linux versions, whereas 32% of RBCs are exposed
in the same major versions.

In order to investigate the interval between versions of the first
bug and the last bug in an RBC, we further conducted statistics
of version intervals of the RBCs, which have bug propagation, as
depicted in Fig. 13. Note that the version interval is computed as
the difference between major version numbers. As the example
shown in Fig. 12(b), the version interval of the RBC is 1, since
the major version numbers of bugs a and b are 27 and 28,
respectively. It can be found from Fig. 13 that there are 55 out
of 100 RBCs with version intervals 1, 2, or 3. This indicates that
the last bugs in 55% of RBCs are exposed after no more than
three major version intervals. However, there are still 13% of
RBCs, in which the last bugs are exposed after no less than four
major version intervals or even to be exposed after night major
version intervals.

4) Largest Weakly Connected Component Related to RBCs:
We analyzed the largest weakly connected component on the
directed bipartite network to understand the severity of an RBC.

Fig. 14. Largest weakly connected component of the directed bipartite
network.

Finding #6: 83% of RBCs affect only a single Linux
subsystem. Bugs on 68% of RBCs are propagated across
versions. Moreover, the last bugs in 13% of RBCs are
exposed after no less than four major version intervals.

Implication: Regression bugs are very annoying to both
developers and users. Even if a newly released version of
Linux may offer new features and security enhancements,
the users may not prefer to upgrade their operating systems
if the release contains an RBC. It is more stable to keep
using an older Linux version before the RBC is eventually
fixed. Worse, more than two-thirds of RBCs propagate
across versions. Releasing a stable version highly relies on
the effective fixing of RBCs.

The largest weakly connected component is the maximal sub-
network of the directed bipartite network G such that every pair
of nodes (x, y) are connected to each other by some path, ig-
noring the direction of edges. As shown in Fig. 14, the largest
weakly connected component consists of 14 bugs, 12 commits,
and 24 RBCs. In the largest weakly connected component, eight
RBCs were initially started from bug ID-9998, and the largest
version interval of these RBCs is 4. Furthermore, all bugs in
the largest weakly connected component are related to the ACPI
subsystem.

C. RQ3: What are the Patterns of Bug–Commit Relationships
for Regression Bugs?

We investigated the patterns (i.e., motifs described in Sec-
tion III-B) found in the directed bipartite network. Since some
bugs have only one type of commits (i.e., BFCs or BICs),
we excluded these bugs to ensure result validity. Therefore,
1128 regression bugs are selected. After conducting the cal-
culation, ten motifs were found. Fig. 15 gives the numbers and
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Fig. 15. Top five frequent motifs found in the directed bipartite network:
(a) one–one, (b) one–two, (c) two–one, (d) one–three, and (e) two–two.

Finding #7: In the worst case, improperly handling fixes of
one bug can introduce at least eight RBCs. In addition, the
largest weakly connected component related to RBCs
consists of at least 14 bugs, 12 commits, and 24 RBCs.

Implication: Similar bugs retrieval and developer
recommendation are important tasks in the automated bug
report management process [33]. The directed bipartite
network is useful for analyzing similar bugs and
recommending these bugs to developers. Combining with
metadata in bug reports and commits, it can further utilize
heterogeneous information network techniques (e.g.,
HIN2Vec [34]) to train a deep learning model for the
prediction of similar bugs and developer recommendations.

proportions of the top five frequent motifs. Note that the number
of bugs in the top five motifs accounts for 99.4% of the selected
bugs. Most of the regression bugs (91.8%) have the one–one
relationship motif (i.e., introduced by one commit and fixed by
one commit). The second and the third frequent motifs are one–
two relationship (i.e., introduced by one commit and fixed by
two commits) and two–one relationship (i.e., introduced by two
commits and fixed by one commit), which accounts for 4.4%
and 1.7% of the selected bugs, respectively.

In order to analyze the relation between motifs and the com-
plexity of regression bugs, we calculated the average fixing time
of the bugs in each motif. To ensure the validity of the results,
all the motifs with the two–two relationship are excluded from
our analysis, since the number of bugs is less than 10. The fixing
time of each regression bug is estimated as the time difference
between the reported time and the resolved time (i.e., resolu-
tion marked as CODE_FIX). Boxplots in Fig. 16 compare the
fixing times of bugs in each motif. The result was tested by
the Kruskal–Wallis test [35], with a null hypothesis that the

Fig. 16. Boxplots comparing the fixing times of bugs in each motif.

motifs have similar fixing times. For a significance level of α
= 0.05, we obtained p = 0.008, which indicates that we can
reject the null hypothesis. The average fixing time of regression
bugs increases when the number of BFCs increases. Compared
to regression bugs that have one BIC, the average fixing time of
regression bugs, which have two BICs, is significantly longer.
The result indicates that motifs are good factors to reflect the
complexity of regression bugs.

Finding #8: Most of the regression bugs (91.8%) have the
one–one relationship motif, and the proportions of
regression bugs, which have one–two and two–one
relationship motifs, are 4.4% and 1.7%, respectively. The
average fixing time of regression bugs with more BFCs is
longer than those with fewer BFCs. Likewise, a bug with
more BICs is also much more costly to be fixed compared
to the one with fewer BICs.

Implication: Motif can be utilized to measure the
complexity of regression bugs. For example, a bug that has
a two–one motif (i.e., caused by two BICs) is likely to be
more complicated than a bug that has a one–two motif (i.e.,
caused by one BIC).

VI. THREATS TO VALIDITY

A. Internal Threats

Threats to internal validity come from experiments, i.e., man-
ual inspection and recovering a bug’s introducing and fixing
commits in Linux bug reports and its Git repository. We have
carefully examined the reports and commits from Linux ver-
sion 2.6.12 to 4.9 using around three-month time with two
persons.

The second threat is about the correctness of data information.
Since bug reports are reported by users and developers, the
correctness of the provided information (e.g., subsystems and
versions) may have an impact on the results of relevant analyses
in this paper.
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The last threat comes from the calculation of bug fixing time.
The fixing time of a bug is estimated as the time when the
bug’s report opens until it is resolved. It does not reflect the
actual time a developer spent in fixing the bug. In addition,
we used the bug fixing time obtained from the bug reports as
the criteria for evaluating the complexity of a bug. However,
two developers may have different capabilities and levels of
experience in repairing the same bug, i.e., spending different
bug fixing times.

B. External Threats

Threats to external validity come from the generalization of
our results. Linux is one of the most important open-source
projects in the world. We believe that this paper is representa-
tive. In addition, we have conducted the study based on 1579 re-
gression bugs and 2630 commits from 57 Linux versions (from
2.6.12 to 4.9). However, we do not try to claim our findings
or conclusions reflect all software. The prevalence and char-
acteristics of RBCs are interesting to be explored in any other
software projects. The proposed methodology is applicable for
any project with version control and bug tracking systems.

VII. RELATED WORK

A. Bug–Commit Relationships

Links between bugs in bug tracking systems and commits
in version control systems can provide valuable information
for software maintenance. Analyzing the relationships between
bugs and commits is widely conducted over the past ten years.
Related studies can be roughly classified as three categories,
including recovering links between bugs and BFCs, recovering
links between bugs and BICs, and studying characteristics of
bug-fixing/introducing commits. These kinds of literature are
discussed in the following paragraphs.

Bachmann et al. [3] found that developers do not always
describe which commits conduct bug fixings, and it was re-
ported that only 46% of bugs in Apache project are linked with
bug fixes. Traditional heuristics methods for collecting links be-
tween bugs and commits are conducted through searching for
keywords and bug IDs. Wu et al. [4] developed an automatic link
recovery based on the criteria of features from explicit links to
recover missing links. They obtained a better result than the tra-
ditional heuristics. Along this line of research, several improved
algorithms are proposed [5]–[7].

The recovery of BICs relies on BFCs. In 2005, Śliwerski et al.
[1] proposed SZZ, an approach for identifying bug-introducing
changes. The proposed approach recovers BICs by tracing back
the changed code in BFCs through code history to find its intro-
duction commits. Based on the approach in [1], Kim et al. [2]
presented algorithms to automatically and accurately identify
BICs. In addition, several empirical studies related to BICs in
software projects are presented for investigating Android [36]
and Google Chromium project [23]. Moreover, the evaluation of
the SZZ approach is a challenging task, since the ground truth is
not readily available. To address the problem, researchers in [26]
proposed a framework to evaluate the results of alternative SZZ

implementations. The framework can provide a systematic way
to evaluate the data generated by a given SZZ implementation.

Besides, there are several studies focusing on the charac-
teristic analysis of BFCs and BICs. Shihab et al. [8] studied
the risk of software changes in a large enterprise. The findings
showed that the criteria for determining risky changes are dif-
ferent from developers and teams. Eyolfson et al. [9] studied
the correlation between a commit’s time-based characteristics
and its “bugginess” in three open-source projects: the Linux
kernel, PostgreSQL, and the Xorg server. It was found that
commits between midnight and 4 A.M. are significantly bug-
gier. To understand how the erroneous tendency of software
developer changes across time, Li et al. [10] investigated the
bug-introducing tendency of developers. They found that the
BIC rates of developers tend to increase first before decreasing.

Most of the existing literature focuses on separate bug–
commit links and rarely analyzes the connections between
bug–commit links (i.e., the relationship among bugs, BICs,
and BFCs). Compared to the existing work, we analyzed the
bug–commit relationships by modeling bugs and commits as a
directed bipartite network.

B. Regression Bugs

Nir et al. [22] found that regression bugs were usually in-
troduced by bug fixes. They developed a tool for assisting the
programmer to locate the lines of code causing a given regres-
sion bug. Khattar et al. [23] investigated regression bugs and
identified the code changes introducing the regression bugs in
Google Chromium project. It was found that 51.1% of labeled
bugs are regression bugs. In addition, more than half of regres-
sion bugs possess high priorities. Recently, Xiao et al. [15] have
reported that 50.1% of classified bugs in Linux are regression
bugs, and regression bugs are more likely to be bohrbugs, i.e.,
bugs that can be consistently reproduced under a well-defined
set of conditions since their activation and/or error propaga-
tion are simple. To the best of our knowledge, our study is the
first work to investigate RBCs in Linux and their characteristics
based on the proposed directed bipartite network.

C. Mining Software Repositories Based on Bipartite Networks

The bipartite networks are appropriate for modeling the rela-
tionships between two disjoint entities. The authors of [37] and
[38] modeled the relations between developers and software
modules (binaries) as a contribution bipartite network. Based
on the network, it was found that central modules are more
failure prone than modules located in surrounding parts of the
contribution network. Dittrich et al. [39] described the owner-
ship between authors and source files in Audacity project as a
bipartite network for identifying key authors and subject matter
experts. Schall [40] modeled the user repository as a directed
bipartite network to introduce an approach for recommending
relevant users to follow in large-scale online development com-
munities. The approach was tested using a GitHub-based dataset
and obtained excellent results regarding context-sensitive
following recommendations.
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VIII. CONCLUSION

In this paper, we presented a large-scale empirical study of
RBCs in the Linux kernel based on 1579 regression bugs and
2630 commits from a bipartite network perspective. First, we
proposed the modeling of the bug–commit relationships as a
directed bipartite network and introduced a novel concept of the
RBC based on the network. Then, we introduced the data source
and data processing procedure. The analysis was performed on
three aspects: the prevalence of RBCs in Linux, the characteris-
tics of RBCs, and the patterns of the bug–commit relationships.
Along with eight findings and their implications, our results
provided useful insights into the software maintenance process
for large-scale real-world software systems.
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