
1356 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

An Empirical Study of Fault Triggers in the Linux
Operating System: An Evolutionary Perspective

Guanping Xiao , Student Member, IEEE, Zheng Zheng , Senior Member, IEEE, Beibei Yin,
Kishor S. Trivedi , Life Fellow, IEEE, Xiaoting Du, and Kai-Yuan Cai

Abstract—This paper presents an empirical study of 5741 bug
reports for the Linux kernel from an evolutionary perspective, with
the aim of obtaining a deep understanding of bug characteristics in
the Linux operating system. Bug classification is performed based
on the fault triggering conditions, followed by an analysis of the
proportions and evolution of the bug types as well as comparisons
among versions, products, and repair locations. In addition, an
analysis of regression bugs and the relationship between the types
of bugs and the time needed to fix them are presented. Moreover,
a procedure for the analysis of bug type characteristics based on
complex network metrics is proposed, and four network metrics,
i.e., degree, clustering coefficient, betweenness, and closeness, are
utilized to further investigate the relationship between bug types
and software metrics. In this paper, 22 interesting findings based
on the empirical results are revealed, and guidance based on these
findings is provided for developers and users.

Index Terms—Bug classification, complex network, evolution,
fault trigger, Linux operating system (OS), Mandelbug (MAN),
regression bug.

NOMENCLATURE

Acronyms
OS Operating system.
BOH Bohrbug.
MAN Mandelbug.
NAM Nonaging-related Mandelbug.
ARB Aging-related bug.
Notations
k Degree.
kin In-degree.

Manuscript received February 3, 2018; revised June 18, 2018 and October 12,
2018; accepted May 6, 2019. Date of publication June 5, 2019; date of current
version November 26, 2019. This work was supported by in part by the Na-
tional Natural Science Foundation of China under Grant 61772055, in part by
the Equipment Preliminary R&D Project of China under Grant 41402020102,
in part by the Technical Foundation Project of Ministry of Industry and Infor-
mation Technology of China under Grant JSZL2016601B003, and in part by
the State Key Laboratory of Software Development Environment. The work of
K. S. Trivedi was supported in part by the U.S. National Science Foundation
under Grant CNS-1523994, in part by the National Natural Science Foundation
of China under Grant 61872169, and in part by IBM under a Faculty Grant.
Associate Editor: I. Gashi. (Corresponding author: Zheng Zheng.)

G. Xiao, Z. Zheng, B. Yin, X. Du, and K.-Y. Cai are with the School
of Automation Science and Electrical Engineering, Beihang University,
Beijing 100191, China (e-mail: gpxiao@buaa.edu.cn; zhengz@buaa.edu.cn;
yinbeibei@buaa.edu.cn; xiaoting_2015@buaa.edu.cn; kycai@buaa.edu.cn).

K. S. Trivedi is with the Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708 USA (e-mail: ktrivedi@duke.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2019.2916204

kout Out-degree.
C Clustering coefficient.
CB Betweenness.
CC Closeness.
nm Network metric.
bug(·)

nm Network metric of a bug.
version(·)

nm Average network metric of bugs for a version.

I. INTRODUCTION

OVER the past 25 years, the Linux operating system (OS)
has been ubiquitously deployed in various areas. Well-

supported Linux distributions are available for a wide variety of
hardware platforms, ranging from embedded devices and per-
sonal computers to powerful supercomputers [1]. With the evo-
lution of the Linux OS, its functionality has been continuously
enhanced. For example, Linux version 1.0 was released in 1994
with approximately 17 000 lines of code, and version 4.14 was
released in 2017 with more than 20 million lines of code. Since
the Linux OS provides operating environments for the software
systems that are executed on a computer, its reliability has a
direct impact on the services that are provided by the running
software systems.

However, failures will inevitably manifest after the deploy-
ment of the Linux OS, as it is not cost-effective to guarantee the
highest possible reliability of the OS through exhaustive test-
ing during the development period. Therefore, the activity of
resolving bug reports provided through bug tracking systems
(e.g., Bugzilla [2]) or static analysis tools (e.g., Coverity [3]) is
a major task in the maintenance phase. A deep understanding of
the fault characteristics in the Linux OS is thus essential and use-
ful for improving its reliability and has consequently attracted
considerable attention throughout its evolution [4]–[9].

It can be expected that comprehending the factors that trig-
ger faults and/or propagate errors could provide valuable in-
sights into the Linux OS development and maintenance phases.
In 1985, Gray [10] considered bug types from the bug mani-
festation perspective. For example, software bugs that always
produce failure on retry are regarded as “hard” bugs and are re-
ferred to as Bohrbugs (BOH), named after the solid and easily de-
tected Bohr atom. By contrast, software bugs that manifest only
transiently are considered “soft” bugs and are called Heisenbugs
because of their uncertain characteristics. To clarify the relation-
ships among different bug types, Grottke and Trivedi [11], [12]
proposed formal definitions of software fault types as follows.

0018-9529 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9419-4058
https://orcid.org/0000-0001-7922-9067
https://orcid.org/0000-0001-7396-6330
mailto:gpxiao@buaa.edu.cn
mailto:zhengz@buaa.edu.cn
mailto:yinbeibei@buaa.edu.cn
mailto:xiaoting_2015@buaa.edu.cn
mailto:kycai@buaa.edu.cn
mailto:ktrivedi@duke.edu

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1357

TABLE I
DEFINITIONS OF THE NAM/ARB SUBTYPES

A BOH can be consistently reproduced under a well-defined set
of conditions. In contrast, the term Mandelbug (MAN) refers
to a bug whose activation and/or error propagation conditions
are complex and thus is a complementary antonym of the term
BOH. MANs can be further categorized into nonaging-related
Mandelbugs (NAMs) and aging-related bugs (ARBs). The ARB
is a type of bugs that can lead to the software aging phenomenon,
i.e., to an increase in the failure rate and/or performance degra-
dation over time [13], [14]. Based on the above classification,
Cotroneo et al. [8] presented an extension to a more specific
bug type classification for NAMs and ARBs. The definitions
of NAM/ARB subtypes are presented in Table I. This was also
the first paper to explore bug characteristics based on the fault
triggering conditions in the Linux OS.

In the current paper, we present a study of fault-trigger-based
bug characteristics for 5741 bug reports from the Linux kernel.
This is a significant extension relative to the work presented in
[8], which considered a data set of 346 bug reports. In addition,
a further investigation of bug type characteristics is conducted
from several perspectives, including an analysis of the propor-
tions and evolution of the bug types, an analysis of regression
bugs, an analysis of the relationship between bug type and fix-
ing time, and an analysis of bug type characteristics based on
network metrics. For each bug report, we carefully examined its
description, the associated comments, and the attached files. The
contributions of this paper can be summarized as the answers to
the following five research questions.

RQ1: What are the proportions of the bug types, and how do
they evolve over versions or time?

Over the past 25 years, Linux has put out more than 1300
releases, from version 1.0 to 4.14. In addition, the development
model of Linux has evolved. For example, releases before ver-
sion 2.6 were divided into stable versions and development ver-
sions. Therefore, it is warranted to explore the proportions of
bug types in Linux and how they change with the evolution of
versions or with time as well as the variation in bug type pro-
portions among versions. Moreover, comparisons of bug type
proportions among products and repair locations are also con-
ducted in this paper. The results of analyzing bug type propor-
tions can be used for a model-based analysis [15], which can
assist in the selection of appropriate complexity scenarios and
parameter values. In addition, comparisons of bug types among
products and repair locations can help us to better understand
the relation between the distribution of bugs and the different
Linux subsystems. The results can guide developers in applying
specific testing strategies for different subsystems.

RQ2: What is the proportion of regression bugs in Linux, and
how does it evolve over versions or time?

The maintenance of Linux becomes an increasingly difficult
task as it evolves [16]. For example, regression bugs can occur.
A regression bug is a bug that leads to the failure of a feature that
worked normally in previous versions due to bug fixes and/or the
implementation of new functionalities in more recent versions
[17]. Therefore, it is interesting to explore the causes of regres-
sion bugs as well as the proportion of regression bugs, how it
evolves over versions or time and how it impacts the evolution
of the bug type proportions. The findings regarding the propor-
tion of regression bugs can be utilized to interpret the quality
of software changes. Developers can assess the quality of soft-
ware changes by comparing the proportions of regression bugs
counted in different versions or periods of development.

RQ3: What is the relationship between bug type and fixing
time?

The bug management process proceeds through several states,
including new, assigned, and resolved [6]. The fixing time of a
bug can be regarded as one measure of bug complexity. A more
complex bug usually requires more time to fix. To address this
research question, we investigate the time spent by developers
on fixing bugs to understand the impact of different bug types
on the bug management process. Such an understanding can
guide developers in applying appropriate testing strategies for
different types of bugs.

RQ4: Is there any software metric that can reflect the
evolution of the bug type proportions?

A bug in a software system means that there is faulty code in
the source code. Thus, the relationship between the evolution of
the bug type proportions and the software structure information
is examined. In this paper, we utilize complex network metrics
to measure the structure information of the Linux OS. Large-
scale software systems are among the most complex man-made
systems, and the interactions among their fundamental compo-
nents, such as those expressed by call graphs or class diagrams,
can be abstracted as networks [18]–[20]. In our previous studies
[21]–[23], we analyzed the topological and functional structures

1358 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

TABLE II
SUMMARY OF FINDINGS RELATED TO THE ANALYSIS OF BUG TYPE CHARACTERISTICS IN THE LINUX OS

of the Linux OS from a complex network perspective. This pro-
vides a research foundation for addressing research questions 4
and 5.

RQ5: Do the characteristics of different bug types differ in
terms of certain network metrics?

To address this research question, we investigate the differ-
ences in bug type characteristics based on the complex network
metrics considered in this paper. The answer to this research
question can help us to better understand the relations between
bug types and software structure information. In addition, sim-
ilar to ARB prediction using software complexity metrics [24],

the results can further be utilized to measure bug characteristics
for bug prediction or classification, if statistically significant dif-
ferences exist between the bug types in terms of these software
complexity metrics. We label a bug and its bug type based on the
affected functions, which are determined by inspecting the cor-
responding bug-fixing patch. The affected functions are nodes
in the corresponding Linux call graph. Thus, the network met-
rics of the nodes with which a bug is labeled can be acquired
and further utilized to represent the characteristics of the bug
and its bug type. The analysis procedure is detailed in the Study
Methodology section.

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1359

The contributions of this paper are summarized into 22 find-
ings, as shown in Table II. The detailed implications of the find-
ings are illustrated in the relevant sections of the paper. These
results provide valuable insight for the developers and users of
the Linux OS.

This paper extends and improves our previous work [25]. Sev-
eral new analyses are conducted. For example, 1) in the bug type
analysis, we present the detailed types of nonbugs and investi-
gate the differences in bug type proportions among repair loca-
tions; 2) in the regression bug analysis, the causes of regression
bugs are further examined and discussed; 3) in the fixing time
analysis, the relationship between regression status and fixing
time is presented; and 4) in the software metric analysis, we pro-
pose a procedure for analyzing bug type characteristics based on
complex network metrics and compare the bug type character-
istics in terms of different network metrics.

The remainder of this paper is organized as follows.
Section II describes the research data, including the Linux OS
itself and the Linux bug data. Section III presents the method-
ology utilized in this study. Sections IV through VI present the
answers to research questions 1 through 3, respectively. The in-
vestigations related to research questions 4 and 5 are presented
in Section VII. Section VIII reports the threats to the validity
of this study, and Section IX introduces related work. Finally,
Section X concludes this paper. Appendix A describes the net-
work modeling of the Linux call graph and the definitions of the
selected network metrics. Appendix B provides detailed infor-
mation for the comparison of bug type characteristics based on
network metrics.

II. RESEARCH DATA

To address the research questions presented in the Introduc-
tion, we collected two types of research data: the source code
of the Linux kernel and Linux bug reports. These data and their
collection procedure are described in detail as follows.

A. Linux OS

The Linux source code was obtained from the official website
[26]. Linux was originally developed by Linus Torvalds in 1991.
The development history of Linux can be classified into three
stages according to the evolution of the development model [16],
[23]. The first stage includes the releases from versions 1.0 to
2.5, and the second stage consists of the version 2.6 series. The
third stage consists of all releases beginning with version 3.0. In
the first stage, the versions were numbered in the form “a.b.c,”
where the first digit “a” represents the kernel version number
and the major and minor version numbers are denoted by the
second digit “b” and the third digit “c,” respectively. Odd major
version numbers correspond to development versions, whereas
even major version numbers represent stable versions. Since
there was a long lag time until new functionality was introduced
into stable versions, the developers decided to change the devel-
opment model when releasing version 2.6. In this stage, 4 digits
were used to denote each release, starting with 2.6.11 [27]. The
third digit indicates the major version, with new functionality,
whereas the fourth digit indicates the minor version, with bug

Fig. 1. Procedure for bug data collection and aggregation. Step 1: Report
filtering. Step 2: Report extraction. Step 3: Version integration.

fixes and security patches. In 2011, to celebrate the 20th anniver-
sary of Linux, the developers retired the numbering method that
was adopted for the version 2.6 series and returned to using 3
digits to denote all releases since version 3.0. It should be noted
that starting with version 2.6.11, major versions have been re-
leased approximately every two or three months.

B. Linux Bug Data

With the evolution of Linux, an extensive repository of bugs
has been accumulated, and this repository is publicly available.
We collected the Linux bug data from the Linux kernel’s official
bug reporting website [2]. As depicted in Fig. 1, the procedure
for bug data collection and aggregation consisted of three steps,
i.e., report filtering, report extraction, and version integration.
These steps are described in detail below.

1) Step 1: Report filtering: In this paper, the reports from
the Linux kernel Bugzilla database were initially fil-
tered based on the conditions of “Status: CLOSED” and
“Resolution: CODE_FIX.”

2) Step 2: Report extraction: Once the filtered list of target re-
ports was obtained, each report on the list was downloaded
to our local computer by a web crawler that we designed.
Each report provides the following information: bug ID,
summary, status, product, component, hardware, impor-
tance, kernel version, tree, regression, reported time, re-
porter, modified time, assignee, attachments (e.g., patch),
description and comments.

3) Step 3: Version integration: It was necessary to process
the recorded versions of the collected reports for the fol-
lowing two reasons. First, some users use distribution
versions that are based on the Linux kernel but still re-
port problems in the Linux kernel Bugzilla. For exam-
ple, the recorded versions “2.6.6-1.414 (Fedora-devel Ker-
nel),” “2.6.16-gentoo-r7,” and “2.6.32-23-generic (ubuntu
10.04)” are not actually formally released versions of
Linux. In addition, some users compile the latest source
code from Git (for example, recorded versions “2.6.21-
rc5-git9,” “2.6.22-rc5-git8,” and “2.6.23-rc6-git2”) but do
not used the formal release versions. Thus, the recorded
versions were integrated into the major versions in ac-
cordance with the Linux version numbering method de-
scribed in Section II-A. For example, recorded version
“2.6.28.7” is regarded as 2.6.28, since version 2.6.28 is a
major version, whereas version 2.6.28.7 is a minor version
of 2.6.28.

1360 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

TABLE III
DETAILS OF THE DATA SET

After collecting and aggregating the bug data, we obtained
5741 bug reports, as shown in Table III. The collected data cover
the mainstream tree for Linux from versions 2.4 to 4.9 and in-
clude all targeted products and hardware platforms. The data
range corresponds to the period from November 2002 through
November 2016.

III. STUDY METHODOLOGY

In this section, we first define the bug terminology used in
this paper and describe the procedure applied for classifying
bug types. Finally, a procedure for analyzing bug characteristics
based on network metrics is proposed.

A. Terminology

Before introducing the terminology, we note that the terms
fault, bug, and defect are all regarded as having the same meaning
in this paper. We adopt the bug type classification from [8], [11],
and [12]. A bug is categorized as a BOH or a MAN depending on
the complexity of the fault triggering conditions. The definitions
of BOHs and MANs are given as follows.

1) BOH: A bug that can be consistently reproduced under a
well-defined set of conditions since its activation and/or
error propagation are simple.

2) MAN: A bug that is difficult to reproduce since its activa-
tion and/or error propagation are complex. The complexity
of the triggering conditions may be related to the influence
of a direct factor, for example, a time lag between fault ac-
tivation and failure occurrence. The complexity could also
be due to indirect factors, for example, the system-internal
environment, the timing of inputs and operations, or the
sequencing of inputs and operations.

MANs are separated into two subtypes, i.e., NAMs and ARBs,
according to whether such a bug would lead to the software aging
phenomenon. As depicted in Fig. 2, NAMs and ARBs also have
subtypes. The definitions of NAM/ARB subtypes are presented
in Table I.

In addition, the definitions of regression and nonregression
bugs are presented below.

1) Regression Bug: A bug that causes a feature that worked
normally in previous versions to stop working after a
certain event.

2) Nonregression Bug: A bug that leads to the failure of a
new feature in the current version.

B. Bug Taxonomy

The procedures for bug report classification and the identifi-
cation of regression bugs are presented in the following. For a
given bug report, the classification procedure is separated into

Fig. 2. Based on the complexity of the fault triggering conditions, bugs are
classified as either BOHs or MANs. MANs can be further categorized into NAMs
and ARBs. There are also subtypes of NAMs and ARBs [8].

three steps, as shown in Fig. 3. Each step is described in detail
as follows.

1) Step 1: Data Cleaning. The bug report should first be in-
spected to confirm whether it truly represents a bug. In
this paper, requests for new features or enhancements,
compile-time issues (e.g., make errors or linking errors),
documentation issues (e.g., missing or outdated documen-
tation or harmless warning outputs), duplicates, and issues
related to operator error are regarded as nonbugs and are
removed from the analysis.

2) Step 2: Extraction of Fault Triggers. The description,
discussion comments, patches, log files, and other files
attached to the bug report are carefully examined to de-
termine 1) the activation conditions, for example, the set
of events and/or inputs needed to trigger errors; 2) the er-
ror propagation behavior, for example, the parameters or
states of the program that were changed by the bug and the
manner in which a changed parameter or state propagated;
and 3) the manifestation of the failure, for example, what
phenomena the user observed when the failure occurred.

3) Step 3: Classification. Finally, based on the extracted fault
triggers and the bug manifestation phenomena as well as
the definitions of each subtype of ARBs and NAMs, the
bug report is checked to determine whether it qualifies as
an ARB, NAM, or BOH. If a bug is identified as an ARB
but there is insufficient information to determine its fail-
ure mechanics, its bug type is marked as ARU. Similarly,
NAU is the label assigned to NAM bugs for which the
information necessary to extract the activation and error

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1361

Fig. 3. Procedure of bug report classification. Step 1: Data cleaning. Step 2:
Extraction of fault triggers. Step 3: Classification.

propagation conditions is lacking. Finally, if a report does
not provide sufficient information to classify the corre-
sponding bug as an ARB, NAM, or BOH, it is labeled as
being of an unknown type (UNK).

In addition, regression bugs are identified according to two
criteria. The first concerns the value of the regression flag in
the bug report. If a bug was reported as a regression bug, it will
have a value of “Yes” in the regression field on its reporting page.
However, a bug report cannot be reliably determined to represent
a regression or nonregression bug based solely on its regression
flag, since the regression flag is submitted by the reporter, who
may misclassify the bug. In addition, the regression flags of
some reports are blank, because the reporters did not record
this information. Therefore, the second criterion is based on
an examination of the textual messages associated with a bug
report (e.g., description and discussion comments) to determine
whether it is consistent with the definition of a regression bug.

All the work done with respect to bug type classification
and regression bug classification was manually performed by
the authors, and when cases of suspect classification were
encountered, they were resolved through cross-checks and
discussions. To clarify the classification procedure, examples
of fault-trigger-based bug type classification and examples of
regression bug classification are presented in the following.
These examples can serve as references for the form of the
classification results. Furthermore, to enable other researchers
to understand and implement our classification procedure more

TABLE IV
EXAMPLES OF CLASSIFIED BUGS

easily and for convenience in further analysis, our data have
been released on our research website.1

Examples of fault-trigger-based bug type classification and
examples of regression bug classification are presented in
Tables IV and V, respectively.

In the following, we describe the process for the classification
of the LAG, ENV, TIM, and SEQ subtypes. With respect to the
LAG type, for the example bug ID-12684 shown in Table IV,
we determine that the machine seems to perform normally af-
ter the first suspend/resume from its description, but it refuses
to resume after a second suspend. We consider the bug to be
activated during or before the first suspend/resume operation,
whereas the failure manifests in the second suspend, which in-
dicates that there is a time lag between the activation of the
bug and the manifestation of its consequent failure. Moreover,
the user description indicates that the failure can be rectified by
forcibly saving and restoring the ACPI nonvolatile state. There-
fore, this bug is classified as an LAG. Regarding the ENV type,
for the example bug ID-11805 presented in Table IV, we can
determine that the activation of the bug is due to the interaction
with external hardware/storage, i.e., the mounting of the XFS
partition. In addition, memory also has an impact on the action
and/or error propagation. Thus, this bug is classified as an ENV.
Regarding the TIM type, for the example bug ID-6045 shown in
Table IV, from its description, we can infer that the timing of the
operations, i.e., device discovery of the root disk and the attempt
to mount the root file system, impacts the activation of the bug.
Therefore, the bug is determined to be a TIM. With respect to the

1[Online]. Available: https://guanpingxiao.github.io/data/linux.xlsx

https://guanpingxiao.github.io/data/linux.xlsx

1362 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

TABLE V
EXAMPLES OF REGRESSION BUGS AND THEIR BUG TYPES

SEQ type, for the example bug ID-1166 shown in Table IV, it
can be observed from this description that the sequencing (i.e.,
relative order) of the operations is the factor that impacts the
activation. Thus, we classify this bug as an SEQ.

C. Bug Analysis Based on Network Metrics

To measure bug characteristics using network metrics, we
need to know the functions that are affected by each bug. The
affected functions are identified from the bug-fixing patch. For
Linux bug reports, the associated patches are usually provided
as attachments or Git commit IDs. In this paper, four representa-
tive complex network metrics, including two local metrics, i.e.,
the degree k and the clustering coefficient C, and two global
metrics, i.e., the betweenness CB and the closeness CC , are se-
lected. The degree of a node in a network is the number of edges
connected to it. The clustering coefficient measures the proba-
bility that a node’s neighbors are also neighbors of each other.
The betweenness is a shortest-path-based metric representing
the centrality of a node in the network, while the closeness is
another measure of centrality. In the following, we detail the
procedure for analyzing bug type characteristics based on these
network metrics. The network modeling of the Linux call graph
and the definitions of the selected network metrics are presented
in Appendix A.

The procedure for measuring the characteristics of a bug based
on the network metrics consists of three steps. To clarify these
steps, an example is given, as shown in Fig. 4.

1) Step 1: Extraction of Affected Functions. The purpose of
this step is to extract the affected functions from the bug-
fixing patch (in diff file format) associated with a bug. The
patch is first manually inspected to identify the changed
statements, and then, we determine which functions con-
tain those changed statements. The patch explicitly spec-
ifies the location of each changed statement in the source
files, such as the line number or function. Therefore, we
can easily determine the affected functions. These affected
functions are recorded in a table, which also contains the
ID of the bug and its bug type. For example, in Fig. 4, the
changed statements in the bug-fixing patch for bug “ID-1”
are in the functions func1 and func2. These functions are
recorded in the table of affected functions. Notably, a bug
will be discarded if the functions that are changed cannot
be identified from the bug-fixing patch, for example, if the
patch modifies only data structures.

2) Step 2: Acquisition of Network Metrics. Once the affected
functions have been extracted in step 1, a table of the
affected functions is obtained. We then output a table
consisting of the network metrics associated with all of
the functions from the corresponding Linux call graph
[23]. To obtain the network metrics associated with the
affected functions, a Python tool written by us is utilized
to automatically search for and record these network met-
rics by matching the function names between the two
tables. The network metrics considered in this paper in-
clude the degree k, the clustering coefficient C, the be-
tweenness CB , and the closeness CC of each affected
function. For example, the in-degree kin of func1 is 1,
whereas its out-degree kout is 2, as shown in Fig. 4.

3) Step 3: Representation of Bug Characteristics. After step
2, the network metrics of the functions affected by the
bug have been obtained. To represent the characteristics
of the bug, several operations (i.e., sum, average, maxi-
mum, and minimum) are applied for the integration of the
network metrics. For example, we can use the sum of the
out-degrees of the affected functions func1 and func2 as
a network metric for bug “ID-1,” as depicted in Fig. 4.
The details of the integration methods are elaborated in
Appendix A.C.

IV. PROPORTIONS AND EVOLUTION OF BUG TYPES

In this section, we present the analytical results for RQ1: What
are the proportions of the bug types, and how do they evolve over
versions or time? The analysis is conducted from four perspec-
tives, including the overall proportions and evolution of the bug
types as well as comparisons of the bug type proportions among
versions, products, and repair locations.

A. Overall Proportions and Evolution of the Bug Types

Finding #1: Among the 5741 bug reports, ac-
tual bugs account for 76.3%, and nonbugs account
for 23.7%. Of the nonbugs, approximately 75.2% of
nonbugs are compile-time issues, feature requests or doc-
umentation issues.

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1363

Fig. 4. Procedure for analyzing bug characteristics based on network metrics. Step 1: Extraction of affected functions. Step 2: Acquisition of network metrics.
Step 3: Representation of bug characteristics.

TABLE VI
NUMBERS AND PERCENTAGES OF ACTUAL BUGS AND NONBUGS

Table VI illustrates the classification results for the collected
bugs. From the bug type classification results in Table VI, it
can be observed that actual bugs account for 76.3% of all col-
lected bugs, whereas the percentage of nonbugs is 23.7%. This
result was tested via the chi-square test, with a null hypoth-
esis of no significant difference between the numbers of re-
ports corresponding to each type. For a significance level of
α = 0.05, the test result is statistically significant (χ2 = 1583.4,
df = 1, p < 0.001). Therefore, we can reject the null hypoth-
esis. It should be noted that in this paper, as described in
Section III-B, reports related to requests for features or enhance-
ments, compile-time issues, documentation issues, duplicates,
or operator error are regarded as nonbugs. Bug report triage is
an important task with the purpose of determining whether a

TABLE VII
NUMBERS AND PERCENTAGES OF NONBUGS SUBTYPES

report is meaningful [28]. It can be observed from Table VII
that approximately 75.2% of the nonbugs are compile-time is-
sues, feature requests, or documentation issues. The results pre-
sented in Table VII were tested via the chi-square test, with a
null hypothesis of no significant difference in the numbers of
reports corresponding to each nonbug subtype. For a signifi-
cance level of α = 0.05, the test result is statistically significant
(χ2 = 257.9, df = 3, p < 0.001); thus, the null hypothesis can
be rejected. Although these reports could represent unfriendly
experiences for users, either there is no urgent need to organize
them for integration into the Linux development process, or they
can usually be resolved easily (e.g., compile-time issues and
documentation issues). However, ensuring that bug report data

1364 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

TABLE VIII
NUMBERS AND PERCENTAGES OF ACTUAL BUG TYPES

are of high quality can not only reduce the burden on bug tracking
system maintainers, but also benefit research on measurements
and predictions based on the data. This finding indicates that the
quality of the bug data has the potential to be improved.

Implications: To improve the quality of Linux bug reports,
it is suggested that on the reporting page, there could be a cus-
tom drop-down field specifying the types of reported problems,
for example, “Bug,” “Feature Request,” “Documentation Is-
sue,” and “Compile-time Issue.” Alternatively, the bug writing
guidelines could suggest that reporters prefix the summary of
each report with the corresponding text “Bug:,” “Feature Re-
quest:,” “Compile-time Issue:,” or “Documentation Issue:.” In
addition, since approximately 40% of nonbugs are compile-time
issues, developers should compile their source code before re-
leasing a new version.

Finding #2: Among the 4378 actual bugs, the proportions of
BOHs and MANs are 55.8% and 36.4%, respectively.

The total numbers and percentages of each bug type, i.e.,
BOHs, NAMs, ARBs, and UNKs, are presented in Table VIII.
The total number of classified bugs, including BOHs, NAMs,
and ARBs, is 4035, which accounts for 92.2% of all actual
bugs. The results presented in Table VIII were tested via the
chi-square test, with a null hypothesis of no significant differ-
ence in the numbers of reports corresponding to each bug type.
For a significance level ofα = 0.05, the test result is statistically
significant (χ2 = 2980.4, df = 3, p < 0.001), which indicates
that there is a significant difference in the numbers of bugs of
the different types as reported in Table VIII. More than half of
the actual bugs in Linux are BOHs, as shown in Table VIII. This
result indicates that BOHs account for a large proportion of the
bugs in Linux. BOHs still pose a serious problem. This find-
ing confirms similar results from previous studies, which have
found remarkably large numbers (proportions) of BOHs in other
software systems (e.g., MySQL: 56.6%, HTTPD: 81.1%, AXIS:
92.5%, and Android: 65.2%) [8], [29] and even in mature crit-
ical systems (e.g., JPL/NASA space mission systems: 61.4%)
[30]. Although BOHs are easy to reproduce and to debug when
detected, they are still difficult to detect in large and complex
software systems, e.g., the Linux kernel. This situation may be
attributed to the inefficacy of testing activities.

Moreover, MANs, including NAMs and ARBs, account for
36.4% of the actual bugs. Obviously, they constitute a nonneg-
ligible portion of Linux bugs. Compared with those in other
software systems, the proportion of MANs in Linux is close
to those in MySQL (38% [8]), space mission onboard software
(36.5% [30]), and the Android OS (31.4% [29]). Since the fault

TABLE IX
NUMBERS AND PERCENTAGES OF NAM SUBTYPES

triggering conditions of MANs are more complex than those of
BOHs, specific testing methods and fault tolerance techniques
should be developed to handle them.

Implications: To mitigate BOHs, we suggest conducting
sufficient testing before release using, for example, the Linux
Test Project [31]. To mitigate the nonnegligible proportion of
MANs, we suggest developing specific testing methods, such
as combinatorial testing [32], and cost-effective fault tolerance
techniques, such as environment diversity [33].

Finding #3: NAMs account for 87.1% of MANs. The major
subtypes of NAMs are TIM (37.3%), ENV (36.5%), and LAG
(19.1%).

Table VIII shows that NAMs and ARBs account for 31.7% and
4.7%, respectively, of the 4378 actual bugs. We further explore
the proportions of subtypes of NAMs and ARBs, the two subcat-
egories of MANs. Table IX shows the numbers and percentages
of NAM subtypes. These results were tested via the chi-square
test, with a null hypothesis of no significant difference in the
numbers of reports corresponding to each NAM subtype. For a
significance level of α = 0.05, the test result is statistically sig-
nificant (χ2 = 780.4, df = 4, p < 0.001), meaning that the null
hypothesis can be rejected. It can be observed from Table IX that
TIMs (37.2%), ENVs (36.5%), and LAGs (19.1%) constitute the
most prevalent subtypes of NAMs. These results are consistent
with those of a previous study [8]. It is reasonable for TIMs and
ENVs to exist in high proportions due to the characteristics of
an OS. The Linux OS inherently must handle concurrent ac-
tivities, access shared resources, and manage hardware, which
will inevitably lead to timing-related problems, such as dead-
lock (example: “ID-26232: Multiple framebuffer oops and sysfs
attribute deadlock”) and race conditions (example: “ID-77251:
fanotify: race condition in case of error in fanotify_read”), as
well as environmental interaction problems, such as “ID-9111:
kernel oops when unplugging usb mouse.” For the LAG subtype,
the root causes are usually data corruption problems or incorrect
state changes. When data are corrupted or a state value is incor-
rect, failures will manifest once these errors propagate through
the system. In Linux, the most common faults of the LAG sub-
type are null pointer dereference problems, such as “ID-10048:
ipv4/fib_hash.c: fix NULL dereference.”

Implications: Since TIMs, ENVs, and LAGs constitute the
major subtypes of NAMs, approaches to debugging, testing, or
fault tolerance for mitigating the impact of NAMs in Linux should
focus on such bugs. More specifically, to handle TIMs, it is sug-
gested that more attention should be paid to thread conflicts and

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1365

TABLE X
NUMBERS AND PERCENTAGES OF ARB SUBTYPES

locking mechanisms in Linux. To test for ENVs, the focus should
be placed on the Linux hardware interfaces, whereas for LAGs,
the values of data variables and state variables, especially those
that are passed in modules or subsystems, should be carefully
examined.

Finding #4: ARBs account for 12.9% of MANs. The major
subtype of ARBs is MEM (68.8%).

The numbers and percentages of the ARB subtypes are pre-
sented in Table X. These results were tested via the chi-square
test, with a null hypothesis of no significant difference in the
numbers of bug reports corresponding to each ARB subtype.
For a significance level of α = 0.05, the test result is statis-
tically significant (χ2 = 406.6, df = 5, p < 0.001). Thus, we
can conclude that there is a significant difference in the counts
shown in Table X. The MEM subtype accounts for more than
two-thirds (68.8%) of the ARBs. This result is close to those
for other software systems [8], [29], [30]. Linux is written in
the C language, in which memory management is handled by
the developers. This makes it more prone to software aging. In
addition, leaks are associated with storage, numerical problems,
and other logical resources.

Implications: We suggest that developers should pay spe-
cial attention to resource release in Linux. Since MEMs consti-
tute the major subtype of ARBs, dynamic memory bug detection
tools such as kmemleak (the Linux kernel memory leak detector)
[34] and static code analysis tools such as Cppcheck [35] are
suitable for debugging kernel memory leaks to address memory-
related ARBs.

In the following, we present the results of analyzing the evo-
lution of the bug type proportions. The evolutionary analysis is
conducted from two perspectives: evolution over versions and
evolution over time. As described in Section II-B, all recorded
versions were integrated into major versions. We calculated the
statistics of the classified bugs corresponding to these integrated
versions. To ensure the validity of the analysis results, a continu-
ous series of adjacent versions (i.e., 2.6.15 to 3.0) with more than
50 bugs were chosen to analyze the evolution of the bug type
proportions over versions. In addition, the evolution of the bug
type proportions over time was calculated. Since the life cycles
of two major versions could overlap (for example, the version
3.7 series was maintained from December 2012 to March 2013,
whereas the version 3.8 series was maintained from February
2013 to May 2013), all versions were considered in the tempo-
ral analysis. The results of the evolutionary analysis are depicted

Fig. 5. Evolution of bug type proportions among classified bug reports.
(a) Evolution over versions. Note that SN represents a sequential number that is
assigned to each version according to its release date; e.g., the sequence number
of version 2.6.15 is 1, and that of version 3.0 is 26. This notation will be used
throughout the remainder of the paper. (b) Evolution over time.

TABLE XI
MANN–KENDALL TREND TEST RESULTS FOR FIG. 5

in Fig. 5. It is noted that a data point in Fig. 5(a) represents a
proportion relative to the number of bugs in a specific version,
whereas a data point in Fig. 5(b) represents a proportion relative
to the cumulative number of bugs up to that time.

Finding #5: The proportion of BOHs tends to grow slowly
both with the evolution of versions and with time, whereas the
proportion of NAMs tends to decrease slowly. The proportion of
ARBs tends to decrease slightly over time. The proportions of all
three types stabilize around constant values after approximately
4000 days.

It is apparent in Fig. 5 that the proportion of BOHs tends to
increase slowly with the evolution of versions and with time.
In contrast, the proportion of NAMs tends to decrease. In addi-
tion, the proportion of ARBs tends to decrease slightly and to
become more stable over versions and time than the proportions
of BOHs and NAMs do. Moreover, as shown in Fig. 5(b), the
proportions of all three types stabilize around constant values
after approximately 4000 days. The evolutionary trends seen in
Fig. 5 were tested by means of the Mann–Kendall trend test [36],
[37]. The results of the Mann–Kendall trend test in this paper
were calculated based on R [38]. As shown in Table XI, the
test results indicate that for a significance level of α = 0.05, the
evolutionary trends of the proportions of BOHs and NAMs over
both versions and time are statistically significant, whereas the
trend of the evolution of the proportion of ARBs over versions
is not statistically significant. The evolutionary trends of BOHs
and NAMs can be explained as follows.

Approximately every two or three months, a major version
of Linux is released. For example, version 4.1 was released on

1366 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

Fig. 6. Cumulative number of bugs of each bug type.

June 22, 2015, whereas version 4.2 was released on August 30,
2015. As Linux evolves, its complexity continuously grows, as
reflected by the increasing number of lines of code [16] and
the increasing number of functions [23]. Meanwhile, a massive
number of features are introduced, which might lead to more
BOHs in newly released versions. Although code changes can
also introduce NAMs, the proportion of NAMs slowly decreases
due to the faster rate of increase of the cumulative number of
BOHs compared with that of NAMs, as shown in Fig. 6. More-
over, the results related to Finding #5 are further explained and
verified by the subsequent detailed analyses of the bug types
in relation to products (i.e., Section IV-C) and regression status
(i.e., Sections V-A and V-B).

Implications: Because of the frequent-release nature of
the Linux development paradigm, it is suggested that de-
velopers should pay greater attention to bugs introduced in
new features and should conduct continuous functional testing
activities.

B. Comparison of Bug Types Among Versions

In this section, four versions, i.e., 2.6.0, 2.6.24, 2.6.27, and
2.6.32, are selected to explore the evolution of the bug type pro-
portions over the lifetime of a version and to compare this bug
type evolution among versions. These four versions are those
with the most bug reports, and two of them are long-term sup-
ported versions (i.e., 2.6.27 and 2.6.32). The results for these
versions are presented in Fig. 7, in which the evolution of the
MAN proportion and the evolution of the cumulative number of
bugs are shown. Note that a data point on the thick line represents
the proportion of MANs relative to the cumulative number of
bugs up to that time, while a data point on the thin line represents
the cumulative number of bugs up to that time.

Finding #6: The proportion of MANs and its evolutionary
trend are different among versions. For all selected versions,
the proportions tend to stabilize around constant values over
time since eventually, few new bugs will be reported.

It can be observed from Fig. 7(a) that the proportion of
MANs was higher than that of BOHs in version 2.6.0, the first
major version of the 2.6 series. The higher proportion of MANs
in version 2.6.0 might be attributable to the implementation of
a new CPU scheduler. In versions before 2.6.0, Linux used a
single run queue that relied on a linked list of threads to manage
all runnable tasks. However, to ensure better scalability on SMP
systems, with version 2.6.0, Linux began to utilize a per-CPU

Fig. 7. Evolution of the MAN proportion and the cumulative number of bugs
for four selected versions: (a) 2.6.0, (b) 2.6.24, (c) 2.6.27, and (d) 2.6.32.

lock rather than the single run-queue lock for task management.
Therefore, the kernel is preemptive beginning with version
2.6.0, since it can respond immediately to interactive processes
[39]. Since the developers needed time to adapt to the new
scheduler, this feature might have led to more NAMs, especially
timing-related bugs, such as race conditions and deadlocks.

In addition, Fig. 7(c) shows that the proportion of MANs
tended to increase in version 2.6.27. The trend was tested via the
Mann–Kendall trend test. For a significance level of α = 0.05,
the test result is statistically significant (Z = 16.9, p < 0.001),
indicating an increasing trend. This result may be because
version 2.6.27 was one of the long-term supported versions.
These are special versions that are supported by the developers
over a very long period. During maintenance, a long-term sup-
ported version may become more stable. Thus, the proportion
of difficult-to-fix bugs (i.e., MANs) will increase, whereas the
proportion of easily isolated and reproduced bugs (i.e., BOHs)
will decrease. Moreover, the proportion of MANs in these ver-
sions tends to stabilize over time because fewer new bugs are
reported. This phenomenon may be due to one of the following
two reasons. Fewer bugs may exist in these versions, or a similar
number of bugs may still exist, but fewer users/developers may
use/maintain these versions, resulting in fewer bug reports.

Implications: The different proportions of MANs in differ-
ent versions might be due to the different major new features
included in those versions. Compared with the other three ver-
sions, Linux 2.6.0 introduced a significant breakthrough (i.e., the
new scheduler mechanism [39]), and it also possessed the high-
est proportion of MANs. Thus, developers can expect more/fewer
MANs depending on whether the next release will include major
new features.

C. Comparison of Bug Types Among Products

Linux consists of several functional products, such as drivers,
file systems, and memory management. We analyze the propor-
tions of bug types and their temporal evolution among products
to understand the impact of different products on bug types.

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1367

Fig. 8. Numbers and evolution of classified bugs among products. (a) Numbers
of bugs. (b) Evolution of bugs with time. Core includes three products: Memory
Management, Process Management and Timers.

In the Linux kernel Bugzilla, the first step of reporting a bug
is to select the product (e.g., Drivers, File System, Memory
Management, or Process Management) to which the bug is re-
lated. The statistics of the bug type proportions as calculated
for different products and the evolutionary trends in the num-
ber of bugs are depicted in Fig. 8. The products presented here
are those that possess the highest numbers of bugs. The num-
bers of BOHs, NAMs, and ARBs in these products, respec-
tively, account for 89.3%, 87.4%, and 88.8% of the total num-
bers of BOHs, NAMs, and ARBs. The differences in the bug
counts in the products shown in Fig. 8 were tested via the chi-
square test, with a null hypothesis of no significant difference
in the numbers of bug reports for each product. For a signifi-
cance level of α = 0.05, the test result is statistically significant
(χ2 = 2233.6, df = 6, p < 0.001). Thus, the null hypothesis
can be rejected.

Finding #7: Driver bugs, i.e., bugs related to the products
Drivers and ACPI, account for 51.6% of all classified bugs. In
addition, the growth rates of the numbers of bugs related to
the products Drivers and ACPI are faster than those of other
products.

From Fig. 8(a), we find that the numbers of bugs in the prod-
ucts Drivers (1456) and ACPI (625) together account for 51.6%
of all classified bugs (4035). Finding #7 confirms a result simi-
lar to that from a previous study [9], in which driver bugs were
found to account for 52.9% of all bugs from a small data set sam-
pled from the same kernel Bugzilla. In addition, the growth rates
of the numbers of bugs related to these two products are faster
than those for other products, as can be observed in Fig. 8(b).
Linux supports a massive number of devices. For example, more
than 100 types of devices are supported in version 4.1, and the
number of functions in their source codes accounts for approx-
imately 50% of the total number of functions [23]. Notably, the
name of the product ACPI is short for advanced configuration
and power interface, which indicates that this product is closely
related to hardware devices. Since Linux supports a great diver-
sity of devices, it is difficult to conduct compatibility testing for
all of the device drivers.

Implications: Since more than half of the classified bugs
are related to Drivers, it is suggested that during Linux testing,
developers should pay more attention to device drivers.

TABLE XII
CORRELATIONS BETWEEN BUG TYPES AND PRODUCTS

Note: The values in parentheses are the standardized Pearson
residuals for the independence testing, and those in bold are those
that exceed a value of 2.

As shown in Fig. 8(a), the bug type proportions differ among
different products. We utilized the chi-square test to determine
whether there is an association between bug type and product,
with the null hypothesis that bug type is not associated with the
product. For a significance level of α = 0.05, the test result is
statistically significant (χ2 = 83.9, df = 12, p < 0.001). There-
fore, we can reject the null hypothesis and conclude that there
is a significant association between bug type and product.

To further test the independence of each bug type and each
product, we calculated the standardized Pearson residual, which
is the residual divided by its standard error [40], with the results
shown in Table XII. Note that since the standardized Pearson
residuals follow a standard normal distribution (with mean 0
and standard deviation 1), a standardized Pearson residual is
significant if its absolute value is greater than 2 [40]. When
a standardized Pearson residual is significant, a positive value
indicates that the observed frequency is significantly greater
than would be expected by chance. For example, as shown in
Table XII, the standardized Pearson residual value for the prod-
uct Drivers and the bug type BOH is 2.1, indicating that bugs
related to product Drivers are more likely to be BOHs. By con-
trast, a negative value implies that the observed frequency is
significantly less than would be expected by chance. For exam-
ple, as depicted in Table XII, the standardized Pearson residual
value for the product Drivers and the bug type ARB is −3.0,
indicating that bugs related to product Drivers are less likely to
be ARBs.

Finding #8: A bug related to the product Drivers, ACPI or
Platform is more likely to be a BOH; a bug in the product File
System or Core (i.e., Memory Management, Process Manage-
ment or Timers) is more prone to be an NAM or ARB; and an
IO/Storage bug is more likely to be an ARB.

In the following, we focus on the positive standardized Pear-
son residual values. As presented in Table XII, the standard-
ized Pearson residual values for the products Drivers, ACPI,
and Platform and the bug type BOH are greater than 2, whereas
the standardized Pearson residual values for the products File
System and Core and the bug types NAM and ARB are greater
than 2. In addition, the standardized Pearson residual value for
the product IO/Storage and the bug type ARB is greater than 2.
The different bug type manifestations among products might be
attributable to inherent differences in the products. With respect

1368 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

to the products Drivers, ACPI, and Platform Specific/Hardware,
although these products serve as bridges between an OS and de-
vices, failures in these products will be observed by users as
more direct manifestations. In addition, Linux drivers have a
higher proportion of BOHs might be because of the reason that
more than 60% of driver bugs belong to the categories of de-
vice protocol violations (38%) and generic programming bugs
(23%), whereas the rest of driver bugs are related to OS proto-
col violations (20%) and concurrency bugs (19%) [41]. When
the driver runs in a manner that violates the required hardware
protocol, device protocol violations occur and often result in
the hardware failing to provide its required service. It is found
that most of device protocol violations and generic program-
ming bugs usually consistently manifest at the user side, i.e.,
devices will function incorrectly every time. For example, de-
vice protocol violations (“ID-1285: radeonfb do not correctly
detect LCD” and “ID-13377: Microphone no longer works on
Toshiba Satellite A100”) and generic programming bugs (“ID-
323: double logical operator drivers/net/fc/iph5526.c” and “ID-
39842: savagefb.h CARD SERIES definition typo”). Note that
the consistent failure manifestations at the user side do not indi-
cate that these bugs can be easy to detect during testing, as it is
often impractical and not cost-effective to test the driver with all
supported hardware. Therefore, bugs occurring in these prod-
ucts are more likely to be BOHs. By contrast, the products File
System, IO/Storage, and Core (i.e., Memory Management, Pro-
cess Management and Timers) are considered to be basic, core
functions of the OS, which means that the interactions among
these products tend to be more complex and tightly coupled [22].
Accordingly, bugs related to these products are more likely to
be NAMs or ARBs.

Implications: We suggest that different testing strategies
should be selected for testing different products. For example,
more functional testing and compatibility testing should be per-
formed when testing the product Drivers, whereas combinatorial
testing [32] might be useful for testing products such as File Sys-
tem, IO/Storage, and Core, since bugs related to these products
are more prone to be NAMs or ARBs.

Moreover, the evolution of the bug type proportions among
the selected products is explored, as shown in Fig. 9. A data
point in Fig. 9 represents a proportion relative to the cumulative
number of bugs up to that time. The trends in Fig. 9 were exam-
ined by means of the Mann–Kendall trend test, with the results
shown in Table XIII. For a significance level of α = 0.05, the
proportions of BOHs in all products exhibit statistically signif-
icant increasing trends, while the proportions of NAMs exhibit
statistically significant decreasing trends in all products except
File System (increasing) and IO/Storage (no trend). For ARBs,
the proportions exhibit statistically significant decreasing trends
in all products except Drivers (increasing).

Finding #9: The evolutionary trends of the bug type pro-
portions differ among products. For example, the proportion of
NAMs related to the product File System tends to grow slightly
with time, whereas the proportions of BOHs in all products
tend to increase slowly. For ARBs, the proportions are prone
to stabilize around a constant value after approximately 3000
days.

Fig. 9. Evolution of bug type proportions in selected products, including
(a) Drivers, (b) ACPI, (c) File System, (d) IO/Storage, (e) Platform, (f) Net-
working, and (g) Core (i.e., Memory Management, Process Management, and
Timers).

TABLE XIII
MANN–KENDALL TREND TEST RESULTS FOR FIG. 9

Implications: Refer to the implications for Findings #5 and
#8.

The findings presented in this section, i.e., Findings #7, #8,
and #9, illustrate that driver bugs, which are more likely to be
BOHs, account for the largest proportion of bugs in Linux. In
addition, the proportion of BOHs tends to increase over time
in all products. These results indicate that more BOHs will be

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1369

TABLE XIV
NUMBERS AND PERCENTAGES OF CLASSIFIED BUGS THAT HAVE PATCHES IN

THEIR REPORTS

newly introduced over time, thus providing further evidence for
Finding #5.

D. Comparison of Bug Types Among Repair Locations

The products mentioned in bug reports are closely related
to the directories of the Linux kernel source code. For exam-
ple, the source code for the product Drivers is mainly located
in the drivers directory. However, there could be discrepancies
between the products recorded in reports and the actual root
causes in the source code, since the reporters might misjudge
which products have problems. In the following, we report the
calculated statistics for the classified bugs that have patches.
Furthermore, we examine the patches for the classified bugs
to determine the corresponding repair locations. For example,
the code fix for “ID-18962: screen failes in kde” is located
in “drivers/gpu/drm/i915/i915_gem.c,” which can be obtained
from the patch. Thus, the repair location for this bug is in the
drivers directory. When code fixes are related to several direc-
tories, the directory with major changes is considered the repair
location.

Finding #10: The repair locations for most bugs are related
to the drivers directory.

Finding #11: A bug whose repair location is related to the
drivers directory is more likely to be a BOH, whereas a bug
whose repair location is related to the fs directory is more likely
to be an NAM or ARB. A bug whose repair location is related to
the core directory (i.e., kernel, mm, or include) is more likely to
be an ARB, while a bug whose patch location is related to the
net directory is more likely to be an NAM.

The statistical results for the classified bugs that have patches
associated with their reports are depicted in Table XIV. More
than two-thirds of the classified bugs have patches. It should be
noted that the lack of a patch for a bug does not necessarily indi-
cate that said bug has not been fixed; rather, it indicates only that
the patch is not provided in the report. Furthermore, we investi-
gate the proportions of the bug types among five repair locations,
i.e., drivers, arch, fs, core (kernel, mm, and include), and net, as
shown in Fig. 10. The numbers of BOHs, NAMs, and ARBs in
these repair locations, respectively, account for 95.5%, 95.6%,
and 96.2% of all BOHs, NAMs, and ARBs in all repair loca-
tions. The difference in the numbers of reports for each repair
location in Fig. 10 was examined via the chi-square test, with
a null hypothesis of no significant difference in the numbers of
bug reports for each repair location. For a significance level of
α = 0.05, the test result is statistically significant (χ2 = 3204.0,
df = 4, p < 0.001), which implies that the null hypothesis can
be rejected. Fig. 10 shows that the drivers directory accounts

Fig. 10. Numbers of bugs based on their repair locations. The location core
includes three directories, i.e., kernel, mm, and include.

TABLE XV
CORRELATIONS BETWEEN BUG TYPES AND REPAIR LOCATIONS

Note: The values in parentheses are the standardized Pearson
residuals for the independence testing, and those in bold are
those that exceed a value of 2.

for the most repair locations, since most bugs are related to the
product Drivers.

Moreover, the chi-square test was used to determine whether
there is an association between bug type and repair location, with
the null hypothesis that bug type is not associated with a repair
location. For a significance level of α = 0.05, the test result is
statistically significant (χ2 = 47.0, df = 8, p < 0.001). Thus,
the null hypothesis can be rejected, and there is a significant as-
sociation between bug type and repair location. To explicitly test
the independence of each bug type and each repair location, the
standardized Pearson residuals were calculated, and the results
are presented in Table XV. The standardized Pearson residual
value for the directory drivers and the bug type BOH is greater
than 2, and the standardized Pearson residual values for the di-
rectory fs and the bug types NAM and ARB are also greater than
2. In addition, the standardized Pearson residual values for the
directory net and the bug type NAM and for the directory core
and the bug type ARB are greater than 2.

Furthermore, we compare the bug densities among repair lo-
cations in version 2.6.0, which has the largest number of bugs.
Table XVI shows the estimated bug density for each repair lo-
cation. Note that the bug density in Table XVI is calculated as
the ratio of the number of bugs in a given version to the code
size (lines of code, calculated with cloc2). Compared to previ-
ous studies (e.g., mean bug density of open source projects: 4.66
bugs/kLoC [42] and Linux: 0.34 bugs/kLoC [8]), the much lower

2cloc (Count Lines of Code) v1.76: [Online]. Available: https://github.
com/AlDanial/cloc.

https://github.com/AlDanial/cloc

1370 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

TABLE XVI
ESTIMATED BUG DENSITY FOR EACH REPAIR LOCATION IN VERSION 2.6.0

Note: The maximum value in each column is shown in bold.

TABLE XVII
NUMBERS AND PERCENTAGES OF REGRESSION AND NONREGRESSION BUGS

bug density in Table XVI is because of the reason that the source
of bugs only includes the classified bugs, but excludes reports
that are still open and UNK. Therefore, the bug density in the
table is not the real bug density, as it only represents the selected
bugs found in a specific time window. Accordingly, Table XVI is
used to compare the relative differences in the bug densities for
different repair locations. It can be observed from the table that
the drivers directory has not only the largest number of bugs,
but also the highest bug density, although its code size is quite
large. This observation confirms a similar result from a previous
study [4], in which Linux drivers have been shown to have the
highest bug density. Finding #11 provides further evidence of
the correlation between bug type and product.

Implications: Refer to the implications for Findings #7
and #8.

V. CHARACTERISTICS OF REGRESSION BUGS

In this section, we present the results for RQ2: What is the
proportion of regression bugs in Linux, and how does it evolve
over versions or time? The analytical results for the proportion of
regression bugs and their bug types are presented first, followed
by the evolutionary analysis. Finally, the causes of regression
bugs are examined.

A. Proportion of Regression Bugs

As described in Section III-A, a bug that can cause a nor-
mal feature that worked in previous versions to misbehave or
fail completely in more recent versions is classified as a regres-
sion bug. In this section, we first present the calculated statistics
for the numbers of regression bugs and nonregression bugs, as
depicted in Table XVII. The difference in the numbers of re-
gression bugs and nonregression bugs in Table XVII was tested
via the chi-square test, with a null hypothesis of no significant
difference in the numbers of bug reports in each category. For
a significance level of α = 0.05, the test result (χ2 = 0.006,
df = 1, p = 0.94) shows that the null hypothesis cannot be
rejected. It is apparent from Table XVII that approximately

Fig. 11. Comparison of bug types between regression and nonregression bugs.

TABLE XVIII
CORRELATIONS BETWEEN BUG TYPES AND REGRESSION STATUSES

Note: The values in parentheses are the standardized Pearson residuals for
the independence testing, and those in bold are those that exceed a value
of 2.

half of the classified bugs in Linux are regression bugs, i.e.,
problems with existing normal features being broken. In com-
parison with other software systems, it is found that the pro-
portion of regression bugs in Linux is close to that in Google
Chromium (51.1% [43]).

Finding #12: Regression bugs account for approximately half
of the classified bugs.

Finding #13: The proportion of BOHs among regression bugs
is higher than that among nonregression bugs. Accordingly, a
regression bug is more prone to be a BOH, whereas a nonre-
gression bug is more likely to be an NAM or ARB.

A comparison of the bug type proportions between regression
and nonregression bugs is shown in Fig. 11. The proportion of
BOHs among regression bugs is higher than that among nonre-
gression bugs. In contrast, more MANs are observed among
nonregression bugs. We used the chi-square test to analyze
whether there is an association between bug type and regression
status, with the null hypothesis that the bug type is not associated
with whether a bug is a regression bug. For a significance level of
α = 0.05, the test result is statistically significant (χ2 = 66.5,
df = 2, p < 0.001). This result implies that the null hypoth-
esis can be rejected and that there is a significant association
between bug type and regression status. To further test the inde-
pendence of each bug type and regression status, we calculated
the standardized Pearson residuals, as shown in Table XVIII. The
standardized Pearson residual value for regression bugs and the
BOH type is greater than 2, and the standardized Pearson resid-
ual values for nonregression bugs and the NAM and ARB types
are also greater than 2. These results indicate that regression
bugs are more likely to be BOHs than MANs. Regression bugs
are annoying to Linux OS users because when they encounter

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1371

Fig. 12. Evolution of the proportions of regression bugs among the classified
bug reports. (a) Evolution over versions. (b) Evolution over time.

Fig. 13. Cumulative numbers of regression and nonregression bugs.

severe regression bugs, users may be unwilling to upgrade their
OSs, although new versions might offer more features or security
enhancements. As a result, users may continue to use older OS
versions, making their systems more prone to security problems.

Implications: We suggest that developers implement more re-
gression testing before releasing a new version to reduce the
occurrence of existing normal features being broken, since half
of the bugs are of the regression type. When dealing with non-
regression bugs, specific testing methods such as combinatorial
testing [32] will be more effective, since a nonregression bug is
more likely to be an NAM or ARB.

B. Evolution of Regression Bugs

In this section, we explore the evolutionary trends of the pro-
portions of regression bugs. The evolutionary analysis is con-
ducted from two perspectives, namely, evolution over versions
and evolution over time, as shown in Fig. 12(a) and (b), respec-
tively. The cumulative numbers of regression and nonregression
bugs are shown in Fig. 13. Note that to ensure the validity of the
analysis results, a continuous series of adjacent versions (i.e.,
2.6.15 to 3.0) with more than 50 bugs was chosen to analyze the
evolution of the bug type proportions over versions. A data point
in Fig. 12(a) represents a proportion relative to the number of
bugs in a specific version, whereas a data point in Fig. 12(b) rep-
resents a proportion relative to the cumulative number of bugs
up to that time. The evolutionary trends in Fig. 12 were tested by
means of the Mann–Kendall trend test, with the results shown in
Table XIX. For a significance level of α = 0.05, the results are
statistically significant; i.e., the proportion of regression bugs
increases over versions and over time.

TABLE XIX
MANN–KENDALL TREND TEST RESULTS FOR FIG. 12

Finding #14: The proportion of regression bugs tends to in-
crease with the evolution of versions and with time. Moreover,
the proportion of regression bugs tends to stabilize around a con-
stant value of 50% of the total bugs after approximately 3500
days.

With the evolution of Linux, an increasing number of fea-
tures are introduced. For example, version 2.4 supports fewer
than 40, 15, 40, and 30 types of device drivers, platform ar-
chitectures, file systems, and network protocols, respectively.
By contrast, in version 4.1, these numbers are increased to
more than 110, 25, 60, and 50, respectively. During the evo-
lution of the OS, a massive number of code changes are im-
plemented in Linux due to the introduction of a significant
number of features. These changes inevitably lead to regres-
sion bugs. Bug-fixing activities are another cause of regression
bugs; examples include “ID-10679: pcspkr: fix dependancies
breaks artsd” and “ID-11440: ipv4: sysctl fixes causes cannot
open /proc/sys/net/ipv4/route/flush.” Therefore, the results re-
lated to Finding #14 are expected, and they indicate that more
BOHs will be newly introduced over time, since regression bugs
are more likely to be BOHs, according to Finding #13. This
provides further evidence supporting Findings #2 and #5.

Implications: Since the proportion of regression bugs in-
creases over versions and time and such bugs are more likely
to be BOHs in Linux, we suggest that developers be more care-
ful when implementing code changes, such as newly introduced
features or bug fixes, and that continuous regression testing
should be conducted before releasing a new feature or fixing a
bug [17].

C. Causes of Regression Bugs

In this section, the causes of regression bugs are analyzed
based on manual inspection of the descriptions and comments
in the reports. In regression bug reports, the reporters usually
state that the bugs are caused by changes from certain Git com-
mits. In addition, since the affected versions are often very close
to previous versions (e.g., a feature may work normally in ver-
sion 2.6.31.1 but fail in version 2.6.31.2), maintainers may ask
the reporters to run git bisect, a binary search, to find the first bad
commit (i.e., the first change leading to the bug). Two authors of
this paper independently inspected the causes of regression bugs
by examining the descriptions (for bug fixing or feature change)
of the bad commits, as provided in the reports. For example, the
description of bug ID-10679 states that the problem was caused
by “pcspkr: fix dependancies.” Thus, we consider the cause of
the bug to be a bug fix. Note that not all reports specify the bad
commit and that for some commits, it is difficult to determine
from their descriptions whether they are intended to fix bugs or
change features. Thus, the causes of such bugs were labeled as

1372 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

TABLE XX
NUMBERS AND PERCENTAGES OF CAUSES OF REGRESSION BUGS

TABLE XXI
EXAMPLES OF DEVELOPMENT ACTIVITIES RELATED TO FEATURE CHANGES

unknown. To ensure consistent results, cross-checks were per-
formed, and conflicting cases were resolved through discussion
to reach a consensus among the authors. Since Git has been used
to track changes to the Linux kernel since version 2.6.12 [44],
we investigated only the regression bugs for version numbers
starting from 2.6.12 to ensure the validity of the analytical re-
sults. As a result, 1907 regression bugs were selected, which
account for 94.4% of all regression bugs.

Finding #15: More than half of regression bugs are caused
by feature changes, including the activities of code cleanup and
simplification, code conversion and refactoring, and feature im-
provement and implementation.

The numbers and percentages of the causes of regression bugs
as identified via manual inspection are presented in Table XX.
These results were examined via the chi-square test, with a null
hypothesis of no significant difference in the numbers of re-
gression bugs with different causes. For a significance level of
α = 0.05, the test result is statistically significant (χ2 = 502.1,
df = 2, p < 0.001). Therefore, the null hypothesis can be re-
jected. We find that more than half of the regression bugs
are due to activities related to feature changes, as depicted in
Table XX. Moreover, we identified four kinds of development
activity examples related to features changes, as summarized in
Table XXI. With the evolution of Linux, it is often necessary to
update “ancient” code, i.e., to perform code optimization, such
as removing or implementing simplifications to obsolete code. If
these code optimization activities are not handled properly, they
will inevitably lead to regression bugs. In addition, the mainte-
nance of existing features and the introduction of new features
can introduce regression bugs.

Finding #16: Approximately one-third of regression bugs are
caused by bug fixes. In addition, it is found that regression bug
chains occur, since the fix for one regression bug can lead to
another regression bug.

Table XX shows that approximately one-third of regression
bugs are introduced by bug fixes. From inspection of these
regression bugs, an interesting phenomenon is observed: chains

Fig. 14. Two typical examples of regression bug chains initially caused by
(a) a feature change or (b) a bug fix.

of regression bugs occur, which means that the fix for one regres-
sion bug can be the cause of another regression bug. Two typical
regression bug chains are illustrated in Fig. 14. The first type of
regression bug chain is initially caused by a feature change, as
shown in Fig. 14(a). Regression bug “ID-55411” was caused
by “commit fcf8058: cpufreq: Simplify cpufreq_add_dev().”
To fix this bug, the developers provided “commit aa77a52:
cpufreq: acpi-cpufreq: Don’t set policy->related_cpus from
.init().” However, this commit (i.e., aa77a52) led to bug “ID-
58761.” Finally, the bug was fixed by “commit f4fd379:
acpi-cpufreq: Add new sysfs attribute freqdomain_cpus.”

By contrast, the second type of regression chain is initi-
ated by a bug fix, as depicted in Fig. 14(b). “commit fc61901:
agp/intel-agp: Clear entire GTT on startup” was introduced in
version 2.6.32.4 for bug-fixing purposes, but it caused the prob-
lem reported as bug “ID-15733.” Later, this bug was addressed
by “commit f1befe7: agp/intel: Restrict GTT mapping to valid
range on i915 and i945.” Unfortunately, since this fix was incor-
rect, it resulted in another regression bug, “ID-16294.” Subse-
quently, the fix (i.e., “commit e7b96f2: agp/intel: Use the correct
mask to detect i830 aperture size”) also induced a regression
bug, “ID-16891,” which was finally fixed by “commit e5e408f:
intel-gtt: fix gtt_total_entries detection.”

Implications: Since more than half of regression bugs are
caused by feature changes, care should be taken in conducting
activities such as code cleanup and simplification, code con-
version and refactoring, and feature improvement and imple-
mentation. In addition, with respect to regression bug chains,
further study will be required to determine whether they are
prevalent in Linux as well as their characteristics, since such
chains will inevitably increase the burden of software mainte-
nance. We suggest developing techniques for capturing the rela-
tionships between regression bugs and their causes and fixes,
such as representing these relationships as networks, which
could be further used to predict regression bugs. As a developer

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1373

TABLE XXII
COMPARISON OF FIXING TIMES BETWEEN BOHS AND MANS

commented in a regression bug report, “I’d like to avoid a
regression fix for a regression fix for a regression fix.”

VI. RELATIONSHIP BETWEEN BUG TYPE AND FIXING TIME

In this section, we present the analytical results for RQ3: What
is the relationship between bug type and fixing time? This re-
search question has two aspects, i.e., the difference in fixing
time between BOHs and MANs and that between regression
and nonregression bugs.

According to the definitions of BOHs and MANs, the fault
triggering conditions of an MAN are more complicated than
those of a BOH. Therefore, it is expected that more time will be
required to fix an MAN. In the following, the time to fix a bug is
estimated as the difference between the reporting time and the
resolution time (i.e., the time when the resolution was marked
as CODE_FIX), since no fixing times are recorded in the bug
reports.

Finding #17: The average time needed to fix an MAN tends
to be longer than that needed to fix a BOH.

The average fixing times and their standard deviations for
BOHs and MANs are presented in Table XXII. The average
time taken to fix an MAN is 182.0 days, whereas fixing a BOH
takes an average of 148.7 days. We used the Wilcoxon–Mann–
Whitney test [45] to further verify these results, with the null
hypothesis that the fixing times for BOHs and MANs are sam-
pled from the same distribution. For a significance criterion of
α = 0.05, we obtained a p value of less than 0.001. This result
indicates that the null hypothesis can be rejected. Accordingly,
we conclude that the time taken to fix a MAN tends to be longer
than that taken to fix a BOH, which is consistent with previous
studies regarding HTTPD [8], AXIS [8], and Android [29].

The significantly different fixing times between BOHs and
MANs might be attributable to the different times required to
handle them during the bug management process. The manage-
ment process for a bug progresses through several states, includ-
ing unconfirmed, new, assigned, and resolved [6]. The majority
of the difference between the times taken to fix a BOH and
an MAN might be because of the different transition times be-
tween the assigned and resolved states. Due to the difference in
the complexity of the fault triggering conditions between BOHs
and MANs, developers usually require considerable time to ob-
tain sufficient information to detect the underlying root causes
in the code to resolve an MAN. In addition, the nondeterministic
nature of MANs could also result in more time taken to repro-
duce an MAN. Consequently, a longer time is required to fix an
MAN.

Implications: Due to the longer fixing time, specific testing
methods (e.g., combinatorial testing [32]) and cost-effective

TABLE XXIII
COMPARISON OF FIXING TIMES BETWEEN REGRESSION BUGS AND

NONREGRESSION BUGS

fault tolerance techniques (e.g., environment diversity [33])
would be helpful for handling MANs.

Finding #18: The average time required to fix a regression
bug tends to be shorter than that required to fix a nonregression
bug.

We also investigated the difference in fixing time between
regression and nonregression bugs, as shown in Table XXIII.
The average time taken to fix a regression bug (109.1 days) is
significantly shorter than that taken to fix a nonregression bug
(214.6 days). These results were again verified by means of the
Wilcoxon–Mann–Whitney test [45], with the null hypothesis
that the fixing times for regression and nonregression bugs are
sampled from the same distribution. For a significance criterion
ofα = 0.05, we obtained a p value of less than 0.001. This result
indicates that the null hypothesis can be rejected. Therefore, fix-
ing a regression bug tends to require less time than is required
to fix a nonregression bug. This result is reasonable since the
causes of regression bugs can usually be found quickly. For
most regression bugs, especially recent ones, reporters or devel-
opers can use git bisect to search for the first bad Git commit
changes that cause the regression bugs. In some circumstances,
a regression bug is solved simply by reverting the initial bad
changes.

Implications: Although the average time taken to fix a regres-
sion bug tends to be shorter than that taken to fix a nonregression
bug, more care should be taken in fixing regression bugs, since
inappropriate regression fixes can lead to more regression bugs,
according to Finding #16.

VII. BUG TYPE CHARACTERISTICS BASED ON NETWORK

METRICS

In this section, we study the characteristics of the bug types
based on software metrics and present the analytical results for
RQ4: Is there any software metric that can reflect the evolution
of the bug type proportions? and RQ5: Do the characteristics of
different bug types differ in terms of certain network metrics?

A. Correlations Between Bug Type Proportions and Network
Metrics

To demonstrate a software metric that can be utilized to re-
flect the evolution of the bug type proportions, we investigate the
relationships between the proportion of BOHs and complex net-
work metrics, including the clustering coefficient C, the degree
k, the betweenness CB , and the closeness CC . To ensure the
validity of the analytical results, we selected only the versions
with more than 50 bugs and calculated their network metrics for
the corresponding Linux call graph [23]. Fig. 15 depicts the rela-
tionships between the proportion of BOHs and the four metrics.

1374 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

Fig. 15. Relationships between the proportion of BOHs and network
metrics. (a) Clustering coefficient C, (b) degree k, (c) betweenness CB , and
(d) closeness CC .

TABLE XXIV
SPEARMAN’S CORRELATION COEFFICIENTS FOR THE PROPORTION OF BOHS

AGAINST THE NETWORK METRICS

In addition, to further analyze these relationships, the Spear-
man correlation analysis was applied, with the results shown in
Table XXIV. Since the MAN type is the complementary
antonym of the BOH type, we only present the analysis results
of the BOH type in Fig. 15 and Table XXIV, and the correlations
for the MAN type have opposite relationships comparing with
that of the BOH type.

Finding #19: With the evolution of the clustering coefficient,
a Linux version tends to possess a higher proportion of BOHs
when its call graph has a smaller clustering coefficient.

As shown in Table XXIV, for a significance level ofα = 0.05,
all Spearman correlations are statistically significant. The sam-
ple size here 32. According to the rule of thumb for interpreting
the size of a correlation coefficient [46], there is a strong corre-
lation (i.e., 0.7 ≤ |ρ| < 0.9) between the proportion of BOHs
and the clustering coefficient C, while the relationships be-
tween the proportion of BOHs and the other network metrics
have moderate (i.e., 0.5 ≤ |ρ| < 0.7) or low correlations (i.e.,
0.3 ≤ |ρ| < 0.5). Therefore, we are only interpreting the rela-
tionship between the proportion of BOHs and C. As described
in Appendix A.B, the C is utilized to evaluate the tendency of
a network to form tightly connected neighborhoods. According
to the results for the evolution of the Linux call graph [23], C
decreases with the evolution of versions. Therefore, the strong
negative correlation between the proportion of BOHs and C in-
dicates that with the evolution of C, the proportion of BOHs
tends to increase. In contrast, because of its strong positive

correlation with C, the proportion of MANs tends to decrease.
This phenomenon might be attributable to the fact that a large C
indicates tight local connections among functions, which could
lead to more interactions among internal functions. As a result,
more complex bug manifestations (i.e., MANs) could occur. By
contrast, a small C indicates loose local connections among
functions, which could result in less complex bug manifesta-
tions (i.e., BOHs).

Implications: The clustering coefficient can be utilized as an
indicator of the expected bug type proportions in future Linux
versions. More specifically, for a future release, we can calcu-
late the clustering coefficient of its call graph to qualitatively
measure its bug type proportions.

B. Analysis of Bug Type Characteristics Based on Network
Metrics

In this section, we further analyze the characteristics of the
bug types based on network metrics. The functions affected by
each bug were extracted from its associated bug-fixing patch. As
reported in Section IV-D, there are patches associated with 2821
of the classified bugs. After performing the analysis procedure
described in Section III-C, to ensure the validity of the results,
we identified 1359 bugs whose affected functions could be de-
termined and extracted from their patches, spanning 18 versions,
with each version containing at least 50 bugs. In the following,
we explore the differences in the bug type characteristics based
on four network metrics, including the degree k, the clustering
coefficient C, the betweenness CB , and the closeness CC . We
calculated the average network metric values corresponding to
the bug types for each version based on the four integration meth-
ods introduced in Appendix A.C (i.e., versionsumnm , versionavenm ,
versionmax

nm , and versionmin
nm). The detailed values of the net-

work metrics corresponding to the bug types for each version
are provided in Appendix B. With the null hypothesis that the
network metrics for BOHs and MANs are sampled from the
same distribution and for a significance criterion of α = 0.05,
the results were tested using the Wilcoxon–Mann–Whitney test
[45]. Comparisons of the bug type characteristics based on the
network metrics are presented in Table XXV.

Finding #20: The characteristics of BOHs and MANs are sig-
nificantly different in terms of the network metric of degree. The
sum of the degrees (kout, kin, and k) and the average and max-
imum degrees (kout and k) for a MAN are significantly larger
than those for a BOH.

Finding #21: The characteristics of BOHs and MANs are
not significantly different in terms of the network metrics of the
clustering coefficient and betweenness.

Finding #22: The characteristics of BOHs and MANs are
significantly different in terms of the network metric of closeness.
The average or minimum closeness for a BOH is significantly
larger than that for a MAN.

It is apparent from Table XXV that the sums of kout, kin, and
k for an MAN are significantly larger than those for a BOH. This
phenomenon indicates that the functions affected by a MAN tend
to be implemented with more function calls and to be called by
more other functions. Additionally, a comparison of kout and

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1375

TABLE XXV
COMPARISONS OF BUG TYPE CHARACTERISTICS BASED ON NETWORK

METRICS

kin shows that the differences in the characteristics of BOHs
and MANs seem to be more strongly reflected by kout. The
average and maximum kout values of the functions affected by
a MAN are significantly larger than those for a BOH, which
indicates that the functions affected by an MAN tend to be more
complex on average than those affected by a BOH and that the
affected function with the most function call implementations
also tends to be more complex for an MAN than for a BOH.
Thus, the complexity difference between BOHs and MANs is
well reflected in the differences in their characteristics in terms
of the network metric of degree.

In addition, it is found from Table XXV that the characteris-
tics of the different bug types in terms of the network metrics of
the clustering coefficient and betweenness are not significantly
different. Although the same metric, i.e., C, is used, the analy-
sis here is different from that in Section VII-A. The analysis in
Section VII-A was performed by considering the entire Linux
call graph, whereas the statistical results for C in this section are
focused on the functions affected by a bug. The bug manifesta-
tion process not only is influenced by the affected functions, but
also could be impacted by the error propagating functions. For
CB , the results indicate that we cannot consider the characteris-
tics of the different bug types to be significantly different based
on this metric.

Furthermore, Table XXV shows that the characteristics of the
bug types in terms of the network metric of closeness are signifi-
cantly different. The average closeness for a BOH is significantly
larger than that for an MAN. A node with a higher closeness is
closer to other nodes. Therefore, the results of the closeness
analysis could explain why BOHs manifest more directly and
consistently than MANs do.

Implications: The characteristics of the different bug types
can be distinguished based on two complex network metrics,
i.e., degree and closeness. The results can be further utilized
to predict MANs at the function level, file level, or subsystem
level. For example, similar to ARB prediction using software
complexity metrics [24], for file-level MAN prediction, we can
use the network metrics of the affected functions to represent the
characteristics of source files that contain MANs. The network
characteristics can be used along with or integrated with other
software complexity metrics (e.g., program size or McCabe’s cy-
clomatic complexity) to train a classification model on examples
of MANs using machine learning algorithms. The trained clas-
sifier can then be applied to new files to predict whether they are
“MAN-prone” or “MAN-free.” In addition, the network metrics
can be further utilized as features for the automatic classification
of bug types.

VIII. THREATS TO VALIDITY

The validity of empirical studies is naturally subject to limita-
tions. Since our examination focused on bugs in the Linux kernel,
we do not intend to present any general implications regarding
the bug characteristics in all software systems. Although many
of the findings have been compared to those for other projects
from previous studies, there is still a need to compare the novel
findings of this paper with findings for other software systems,
e.g., real-time OSs [47]. Additionally, we identify the following
threats.

A. Selection of Bug Reports

In this paper, the bug data were exclusively drawn from closed
and fixed reports. The reason is that reports of bugs that have not
yet been fixed may contain incomplete and inaccurate informa-
tion. The bug type proportions could be influenced by consider-
ing these future closed and fixed bug reports, since the properties
of the fixed and unfixed bugs may differ. For example, MANs
may tend to be fixed less frequently than BOHs. However, anal-
yses of fixed bugs have also found remarkably large numbers
(proportions) of BOHs in other software systems [8], [29] and
even in mature critical systems [30]. Thus, it is possible that our
focus on fixed bugs has not biased the results. To further verify
our results, in our future work, we plan to examine reports of
bugs that have not been fixed. In addition, the bug characteristic
analysis was performed based on bug data from the Bugzilla
database for the official Linux kernel. There are several other
bug sources available for various Linux distributions, such as
Arch Linux, Gentoo Linux, and Ubuntu Linux. Similar anal-
yses conducted on these bug sources could indicate different
bug characteristics compared with the analysis results based on
official Linux bug data.

1376 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

B. Manual Inspection and Analysis

In this paper, the bug classification and analysis were manu-
ally performed. Four of the authors were involved in the man-
ual classification and analysis, and all authors participated in
the experimental design and the discussions of the results.
The time consumption for all of the manual work was as
follows.

1) The classification of the bug reports, including the fault-
trigger-based bug types and regression bugs, took us
approximately four months.

2) The determination of the repair locations took nearly two
weeks.

3) The analysis of the causes of the regression bugs took us
approximately one month.

4) The extraction of the affected functions took
approximately one month.

5) The analysis and discussion of the results took nearly one
and a half months.

To ensure the consistency of the results obtained by dif-
ferent authors, cross-checks were performed, and conflicting
cases were resolved through discussion to reach a consensus
among the authors. In addition, for the manual analysis, sev-
eral tools (existing or written by us) were utilized to help us
ensure the correctness and consistency of the results. For ex-
ample, for bug counting, we first counted bugs based on dif-
ferent filtering conditions (e.g., bug type, product, and version)
using Microsoft Excel. We then wrote Linux bash command
scripts (using, e.g., grep and uniq) to verify the results auto-
matically. Regarding figure generation, most of the figures used
in the analysis were generated by OriginPro, a data analysis
and graphing software. For the statistical testing of the results,
the tests were performed using SPSS [48] and R [38] to en-
sure the correctness and consistency of the test results. How-
ever, as in all empirical studies in which manual inspection
is needed, the possibility of classification mistakes and man-
ual inspection mistakes could not be completely avoided in this
paper.

C. Correctness of Data Information

Since bug reports are reported by users and developers, the
correctness of the provided information (e.g., products and ver-
sions) may affect the results of the relevant analyses in this pa-
per. To mitigate this impact, problematic reports (e.g., omis-
sions, errors, and nonbugs) were excluded from the analyzed
data set as much as possible. For example, in the first step of the
bug classification process, nonbugs, which accounted for 23.7%
of all reports, were identified and excluded from the analysis.
Although the kernel Bugzilla triages and marks duplicate re-
ports, we still found duplicates among the collected reports. In
addition, we specified unknown types (i.e., UNK, NAU, and
ARU) to account for those reports that were difficult to clas-
sify due to insufficient or uncertain information. For example,
UNKs accounted for 7.8% of all actual bugs, NAUs accounted
for 6.4% of all NAMs, and ARUs accounted for 10.7% of all
ARBs.

D. Bug Type Definitions

The bug types are defined based on the bug manifestation
properties in terms of the fault triggering conditions. However,
the fault triggering conditions could be different for different
types of software systems, for example, the environment in
the case of the ENV subtype of NAMs. With respect to the
Linux OS, we consider the operating conditions of any exter-
nal hardware devices, mountable file systems, running applica-
tions, and so on to constitute the environment. However, with
respect to non-OS software systems, the OS itself would be the
environment.

E. Dynamic Aspects of Error Propagation and Bug Impact

The dynamic aspects of error propagation and bug impact
were mainly identified from the information provided in the bug
reports. In this paper, a bug report not only contains the textual
description about the failure behavior, but also includes attached
files (if available) related to the reproduction, diagnosis, and fix-
ing [6], [8]. In the Linux kernel Bugzilla, to clearly describe the
failures encountered and to help developers resolve bugs, in ad-
dition to reporting the failure behavior, reporters usually attach
or would be required to attach one or more of the following
files, such as test cases (e.g., steps to reproduce), crash log files
(e.g., dmesg log file, syslog log file), configuration, and sys-
tem/device information files (e.g., lspci output file, lsusb output
file). These attached files can provide partial dynamic aspects of
failure behavior. For example, the call trace in a dmesg log file
recorded a list of kernel functions executed just before a failure,
which provides us the dynamic execution information before
the failure. By examining the textual description and forum dis-
cussion of a bug report together with examining the attached
files, it can help us better identify the type of a bug. In addition,
the patches submitted by developers would also be examined
to assist us in determining the bug type. For example, if a fix-
ing patch only revised a typo in the code, we can infer that the
bug can be consistently reproduced under a well-defined set of
conditions. Besides, to ensure the accuracy, during the classifica-
tion process, a bug report with insufficient information, such as
coarse-grain textual description about the failure or insufficient
file attachments, would be labeled as an unknown type (e.g.,
UNK). Although bug reports with insufficient information have
been excluded to improve the accuracy, we recognize that using
bug reports by also considering the attached files may not be
able to fully identify the dynamic aspects and failure behavior,
affecting the bug classification, especially the classification of
the subtypes LAG, ENV, TIM, and SEQ, and the results of sub-
sequent analyses related to the classification, such as bug type
proportions and bug type characteristic analysis.

F. Evolutionary Analysis

Several factors may influence the evolution of bugs. With re-
gard to the version evolution analysis, a new release can motivate
users to migrate to the new version. Thus, bugs in the previous
versions will subsequently be less reported. In addition, with
regard to the temporal evolution analysis, bug reporting may

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1377

decrease as a result of fixes to the current version taking more
time.

G. Fixing Time

The time required to fix a bug was computed as the differ-
ence between the reporting time and the resolution time (i.e.,
the time when the resolution was marked as CODE_FIX). Al-
though this is a better approximation of the actual fixing time
than the whole lifetime of the report (i.e., the closing-opening
time difference) is, it does not reflect the actual time taken to fix
the bug, especially if the reporter misuses the bug tracking tool.
For example, a developer might report a bug only when he/she
already has the fix ready. Thus, the results assume a low average
impact of the potential misuse of the tracking tool. In addition,
the fixing time could be impacted by the patch review process
(e.g., whether the appropriate maintainers are available and how
busy they are). Thus, we assume that the patch review process
has the same impact on all estimated times.

H. Network Metric Analysis of Bug Types

In Section VII-A, the relative proportions were utilized to an-
alyze the correlations between bug types and network metrics.
Unlike for some software systems, for which a major version is
released only after the last minor version of the previous major
version, the development periods of version series of the Linux
kernel usually overlap. Consequently, several version series ex-
ist at the same time [16]. In addition, several factors, such as the
maintenance time, release time, and the number of users of a
given version, can impact the number of bugs reported for that
version. Because of these mentioned reasons, the numbers of
bugs are not comparable among versions. Therefore, we used
the relative proportions of the bug types in the analysis. To en-
sure the validity of the proportions, we selected only the versions
with more than 50 bugs. In Section VII-B, the analysis of the
bug type characteristics in terms of complex network metrics
relies heavily on the associated bug-fixing patches because the
affected functions were extracted from these patches. The cor-
rectness of the patches could thus affect the analysis results. In
addition, for the network analysis, we used global metrics, i.e.,
closeness and betweenness, to measure the effects of error prop-
agation. We recognize that this approach might be inaccurate.
Moreover, the differences in the bug type characteristics in terms
of the network metrics could be different in other software sys-
tems. In this sense, the analysis procedure and findings should
be regarded as a framework for the use of complex network met-
rics to analyze the manifestation characteristics of bugs, to be
confirmed or rejected by further studies on other software sys-
tems or on other bug type classifications, rather than as general
findings.

IX. RELATED WORK

In this section, we first highlight the most closely related work
on bug characteristic analysis from the bug manifestation per-
spective. Then, we present several other works regarding re-
gression bug analysis. Afterward, we introduce several studies
that have analyzed the Linux OS from the complex network

perspective. Finally, the differences between this paper and pre-
vious studies on software bug analysis based on the code in
patches are presented and discussed.

Several papers defining the general characteristics of bugs
exist, such as the IEEE Std. 1044 scheme [49], the Hewlett–
Packard scheme [50], and the orthogonal defect classification
(ODC) scheme [51]. ODC categorizes bugs based on several
attributes, of which the most important is the bug type, which
captures the semantics of the fix applied by the programmers
and the bug trigger. The classification utilized in this paper is
based on the bug manifestation perspective. In 1985, Gray [10]
proposed a systematic abstraction of the manifestation of bugs.
For easily reproducible bugs, he described them as solid or hard
faults and designated them as BOHs. For transient reproducible
bugs, he described them as soft or elusive bugs and designated
them as Heisenbugs. Subsequently, the term MAN was proposed
to represent a type of bug whose underlying causes are complex
and whose manifestations are chaotic and nondeterministic [52].
To clarify the relationships among different definitions of bug
types, Grottke and Trivedi [11], [12] proposed detailed defini-
tions of BOHs and MANs. They defined MANs as the comple-
mentary opposite counterparts of BOHs, whereas Heisenbugs
were defined as a subset of MANs. Moreover, depending on
whether they can cause the software aging phenomenon, MANs
were further classified into ARBs and NAMs. In 2013, Cotro-
neo et al. [8] provided a more detailed subtype classification for
ARBs and NAMs according to the different kinds of complexity
present in their fault triggering conditions.

On the basis of the above classification scheme, several studies
have addressed bug classification and related bug characteristic
analyses for various software systems [8], [29], [30]. Grottke
et al. [30] explored the faults found in the onboard software
for 18 JPL/NASA space missions. In that paper, among the 520
faults detected in all 18 missions, 61.4% of the faults were iden-
tified as BOHs, and 36.5% of the faults were classified as MANs.
Cotroneo et al. [8] investigated bugs in four open-source soft-
ware systems, including Linux, MySQL, HTTPD, and AXIS.
They found that the proportion of MANs tended to stabilize
around a constant value during the lifecycle of each of the four
projects. Moreover, Qin et al. [29] performed a fault-trigger-
based bug classification for the Android OS by examining 513
bug reports. In this paper, it was found that 31.4% of the bugs
were MANs. Other studies related to the bug manifestation per-
spective are summarized as follows. Chandra and Chen [53]
investigated faults occurring in Apache web server, GNOME
desktop, and MySQL database environments. They found that
5%–14% of the faults were triggered by transient conditions,
such as timing and synchronization issues. These faults naturally
fixed themselves during recovery. Cotroneo et al. [54] studied
the characteristics of the bug manifestation process by defining a
set of failure-exposing conditions, such as workload-dependent
triggers and environment-dependent triggers. In addition, sev-
eral studies have focused on specific types of bugs, including
ARBs [55] and concurrency bugs [56].

Here, we summarize several studies on regression bugs. Nir
et al. [57] found that regression bugs were usually caused by
bug fixes included in patches. Shihab et al. [58] performed an
industrial study on the risk of software changes. In their work,

1378 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

they found that the number of bug reports and the developer ex-
perience could be considered the best indicators of change risk.
Khattar et al. [43] conducted an in-depth characterization study
of regression bugs in the Google Chromium project. One inter-
esting finding was that 51.1% of the bugs in Google Chromium
are regression bugs.

Regarding the complex network analysis of software, several
related studies have been performed. Large-scale software sys-
tems can be considered to be among the most sophisticated man-
made systems and can be abstracted as networks [18]. An OS is a
typical software product that provides an execution environment
for the software that runs on the system. In 2008, Zheng et al.
[59] proposed two new network growth models to better describe
Gentoo Linux. Gao et al. [21] modeled the kernel directory of
the Linux kernel as a complex network. In their work, it was
found that with regard to the robustness of the kernel network to
intentional attacks, nodes with high in-degrees providing basic
services will cause more damage to the system as a whole. Wang
et al. [22] investigated the coupling relationships among com-
ponents in the Linux OS from the perspectives of topology and
function, and they further studied the network impact of failures.
Recently, Xiao et al. [23] performed an evolutionary analysis of
62 major releases of the Linux OS, including versions 1.0 to 4.1,
from a complex network perspective. The characteristics of the
topological and functional structure evolution of the Linux call
graph were revealed.

In one class of studies, software bugs are analyzed based on
the code in the patches developed to address them. Durães and
Madeira [60] utilized the source code in a set of patch and diff
files from several open-source projects to classify a total of 668
faults according to the ODC scheme. It was found that sim-
ple programmer mistakes were typically responsible for soft-
ware failures. In addition, a state-of-the-art technique called G-
SWFIT was proposed to emulate software faults and assess their
impact. Fonseca et al. [61], [62] analyzed the source code of se-
curity patches for widely used web applications. They reported
that only a small subset of the software fault types was related
to security problems. Tan et al. [9] classified 583 bugs collected
from Mozilla, Apache, and Linux into three types (i.e., mem-
ory bugs, concurrency bugs, and semantic bugs) based on their
root causes by manually inspecting the source code of the cor-
responding patches. They reported that semantic bugs were the
dominant class. In contrast to these studies, our work focuses
on bug characteristics from the perspective of bug manifestation
in terms of fault triggers rather than from the perspective of the
developers’ involvement in the coding mistakes, as in the case
of classifying and analyzing bugs based on specific mistakes in
the source code.

X. CONCLUSION

In this paper, a comprehensive empirical study of bug char-
acteristics in the Linux OS from an evolutionary perspective
was presented based on 5741 bug reports. First, we defined the
bug classes and the steps performed in the manual inspection.
The analysis was conducted from four perspectives, namely, bug
types, regression status, fixing time, and software metrics, and
yielded 22 findings and implications that can be useful to the

developers and users of the Linux OS. Among these findings,
some of them reinforced the existing body of knowledge on
bugs (e.g., the trends and relative proportions of BOHs/MANs,
the dominance of driver bugs among OS bugs, and the longer
fixing time for MANs), and others of them were expected (e.g.,
the evolutionary trends of regression bugs and the shorter fix-
ing time for regression bugs). To better interpret the findings, we
identified two types of findings that are nonobvious. First, the re-
sults of analyzing the associations between bug types and Linux
subsystems (i.e., Findings #8 and #11) and between bug types
and regression statuses (i.e., Finding #13) revealed which bug
types are more prone to occur in which Linux subsystems (e.g.,
Drivers bugs are more likely to be BOHs, whereas File System
bugs are more likely to be NAMs or ARBs) and that nonre-
gression bugs tend to be MANs. These associations can guide
developers in applying different testing strategies to test differ-
ent subsystems or to test for regression/nonregression bugs. In
addition, the findings related to the software complexity metrics
(i.e., Findings #19 to #22) revealed that the characteristics of
BOHs and MANs exhibit statistically significant differences in
terms of such metrics. These results can be further utilized to
predict and classify MANs.

There is abundant future work to be done in this field. We
present the following directions of research that deserve to be
pursued.

1) Automatic classification of fault-trigger-based bug types.
In our previous study [63], we utilized a deep learning
method to automatically classify bugs, achieving an ac-
curacy of 0.691. We plan to improve on this result by
considering the characteristics of the different bug types
in terms of network metrics.

2) Automatic representation of the relationships between re-
gression bug reports and their causes and fixes. The results
of a further analysis have revealed that the occurrence of
regression bug chains is nonnegligible in Linux [64]. It
would be interesting to develop a technique for formaliz-
ing the regression relationships to enable further studies
of regression bugs in Linux and other software systems.

3) Use of the network metric analysis procedure to examine
the bug type characteristics in other software systems.

APPENDIX A

Here, we illustrate the network modeling of the Linux call
graph and then present the definitions of the complex network
metrics selected to measure the characteristics of the bug types
from a network perspective. Finally, the definitions of the inte-
gration methods for network metrics are given.

A. Network Modeling

The Linux kernel is primarily implemented based on the C
programming language. The functionality realization of a soft-
ware system developed in C predominantly depends on the
function calls, which can commonly be represented as a call
graph, as shown in Fig. 16. In this paper, we define the static
call graph of the Linux kernel as a directed network G(N,E),
where N = {v1, v2, . . . , vn} is a set of n nodes, each of which
represents a function in the source code of the Linux kernel,

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1379

Fig. 16. Depiction of the abstraction of an example C-language program as a
directed network. (a) is an illustration of the source code of the program, whose
static call graph, which is depicted in (b), can be modeled as a directed network.

and E = {e1, e2, . . . , em} is a set of m edges, each of which,
ei = (vs, vt) (i = 1, 2, . . . ,m), denotes a call between a pair of
functions, i.e., nodes vs and vt (vs, vt ∈ N). In this paper, we
model the Linux OS in the form of directed networks and focus
on the largest weakly connected part of each network.

B. Network Metrics

We choose four representative complex network metrics, of
which two metrics represent local properties, i.e., the degree k
and the clustering coefficient C, and the other metrics represent
global properties, i.e., the betweenness CB and the closeness
CC . These network metrics are defined as follows.

1) Degree: The degree of a node in a network is the number
of edges connected to it. For a directed network, a node
has two types of degrees: an in-degree and an out-degree.
The in-degree of a node in the Linux call graph represents
the number of functions calling it, whereas the out-degree
represents the number of functions that it calls. For ex-
ample, as shown in Fig. 16, the in-degree of func5 is 1,
whereas its out-degree is 2. The in-degree and out-degree
of a given node i are usually denoted by kini and kouti , re-
spectively. In addition, the undirected degree of node i is
denoted by ki and is calculated as

ki = kini + kouti . (A1)

2) Clustering Coefficient: The clustering coefficient of a node
measures the probability that a node’s neighbors are also
neighbors of each other. In the Linux call graph, a larger
clustering coefficient indicates more tightly connected in-
teractions among the neighboring functions of a node. For
a directed network, the clustering coefficient of a node i
is calculated as [65]

Ci =
1

2

∑
j

∑
k (aij + aji)(aik + aki)(ajk + akj)

(kini + kouti)(kini + kouti − 1)− 2
∑

j aijaji
(A2)

where the value of aij is 1 if an edge from node i to j
exists and aij = 0 otherwise. For example, as depicted in
Fig. 16, the clustering coefficient of func5 is 0.167. The
clustering coefficient of the entire network is calculated as

C =
1

n

n∑

i=1

Ci. (A3)

3) Betweenness: The betweenness is a shortest-path-based
metric representing the centrality of a node in the network.
It measures the number of shortest paths that pass through
the node. The expression for the betweenness of a node i
is [66]

CB(i) =
∑

s �=i �=t

σst(i)

σst
(A4)

where σst is the total number of shortest paths from node
s to t, while σst(i) is the number of those paths that pass
through node i. For a large network,CB can be normalized
as shown in A5. For example, in the network depicted in
Fig. 16, the betweenness of func5 is 1

C
′
B(i) =

CB(i)− min(CB)

max(CB)− min(CB)
. (A5)

4) Closeness: The closeness is another measure of centrality.
It is calculated as the reciprocal of the sum of the length
of the shortest paths between a node and all other nodes
in the network. A node with a larger closeness is more
centrally located in the network and is closer to all other
nodes. The closeness of a node i is defined as [66]

CC(i) =
1

∑
j �=i d(i, j)

(A6)

where d(i, j) is the distance between nodes i and j. In
addition, CC can be normalized as shown in (A7). For
example, in the network depicted in Fig. 16, the closeness
of func5 is 1

C
′
C(i) = (n− 1)CC(i). (A7)

C. Integration Methods for Network Metrics

In this paper, four methods of integrating the network metrics
are presented, including the SUM, AVERAGE, MAXIMUM, and
MINIMUM operations. These integration methods are defined
as follows. For a given bug, suppose that the number of affected
functions extracted from its corresponding patch is q. Then, the
network metric representations of the bug are calculated as fol-
lows.

1) SUM: the sum of the affected functions’ network metrics

bugsum
nm =

q∑

p=1

nm(p), 1 ≤ p ≤ q (A8)

where nm denotes a specific network metric. For example,
when the clustering coefficient C is considered, the corre-
sponding network metric of the bug is denoted by bugsum

C .
Note that nm has the same meaning in the following ex-
pressions.

2) AVERAGE: the average of the affected functions’ network
metrics

bugave
nm =

∑q
p=1 nm(p)

q
, 1 ≤ p ≤ q. (A9)

3) MAXIMUM: the maximum of the affected functions’
network metrics

bugmax
nm = max(nm(p)), 1 ≤ p ≤ q. (A10)

1380 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

TABLE XXVI
DETAILED VALUES FOR TABLE XXV: kout

TABLE XXVII
DETAILED VALUES FOR TABLE XXV: kin

4) MINIMUM: the minimum of the affected functions’
network metrics

bugmin
nm = min(nm(p)), 1 ≤ p ≤ q. (A11)

The average network metrics of the bugs for a version are fur-
ther obtained by averaging the corresponding network metrics
of all bugs present in that version. Suppose that the number of
bugs present in a given version is t. The average network metrics
of the bugs for that version are calculated using the following
expressions.

1) SUM:

versionsum
nm =

∑t
s=1 bugsum

nm (s)

t
, 1 ≤ s ≤ t. (A12)

TABLE XXVIII
DETAILED VALUES FOR TABLE XXV: k

TABLE XXIX
DETAILED VALUES FOR TABLE XXV: C

2) AVERAGE:

versionave
nm =

∑t
s=1 bugave

nm (s)

t
, 1 ≤ s ≤ t. (A13)

3) MAXIMUM:

versionmax
nm =

∑t
s=1 bugmax

nm (s)

t
, 1 ≤ s ≤ t. (A14)

4) MINIMUM:

versionmin
nm =

∑t
s=1 bugmin

nm (s)

t
, 1 ≤ s ≤ t. (A15)

APPENDIX B

The detailed values of the network metrics for bugs of dif-
ferent types for the analysis in Section VII-B are provided in
Tables XXVI–XXXI.

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1381

TABLE XXX
DETAILED VALUES FOR TABLE XXV: CB

TABLE XXXI
DETAILED VALUES FOR TABLE XXV: CC

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions for improving the
paper.

REFERENCES

[1] LWN Distributions List. 2017. [Online]. Available: https://lwn.net/
Distributions/

[2] Kernel.org Bugzilla Main Page. 2017. [Online]. Available: https://bugzilla.
kernel.org/

[3] Coverity Scan - Static Analysis. 2017. [Online]. Available: https://scan.
coverity.com/

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study
of operating systems errors,” ACM SIGOPS Operating Syst. Rev., vol. 35,
no. 5, pp. 73–88, 2001.

[5] P. J. Guo and D. R. Engler, “Linux kernel developer responses to
static analysis bug reports.” in Proc. USENIX Annu. Techn. Conf., 2009,
pp. 285–292.

[6] M. F. Ahmed and S. S. Gokhale, “Linux bugs: Life cycle, resolution and
architectural analysis,” Inf. Softw. Technol., vol. 51, no. 11, pp. 1618–1627,
Nov. 2009.

[7] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in linux: Ten years later,” ACM SIGPLAN Notices, vol. 46, no. 3,
pp. 305–318, 2011.

[8] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi,
“Fault triggers in open-source software: An experience report,” in Proc.
IEEE Int. Symp. Softw. Rel. Eng., Pasadena, CA, USA, Nov. 2013,
pp. 178–187.

[9] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteristics
in open source software,” Empir. Softw. Eng., vol. 19, no. 6, pp. 1665–1705,
Dec. 2014.

[10] J. Gray, “Why do computers stop and what can be done about it?” in Proc.
IEEE Symp. Rel. Distrib. Softw. Database Syst., Los Angeles, CA, USA,
Jan. 1986, pp. 3–12.

[11] M. Grottke and K. Trivedi, “Software faults, software aging and software
rejuvenation,” J. Rel. Eng. Assoc. Japan, vol. 27, no. 7, pp. 425–438,
Oct. 2005.

[12] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40, no. 2, pp. 107–109, Feb. 2007.

[13] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvena-
tion: Analysis, module and applications,” in Proc. IEEE Int. Symp. Fault-
Tolerant Comput., Pasadena, CA, USA, Jun. 1995, pp. 381–390.

[14] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in Proc. IEEE Int. Conf. Softw. Rel. Eng. Workshops, Seattle, WA,
USA, Nov. 2008, pp. 1–6.

[15] M. Grottke, D. S. Kim, R. Mansharamani, M. Nambiar, R. Natella, and
K. S. Trivedi, “Recovery from software failures caused by Mandelbugs,”
IEEE Trans. Rel., vol. 65, no. 1, pp. 70–87, Jul. 2016.

[16] A. Israeli and D. G. Feitelson, “The linux kernel as a case study in software
evolution,” J. Syst. Softw, vol. 83, no. 3, pp. 485–501, Mar. 2010.

[17] J. Johnson, J. Kenefick, and P. Larson, “Hunting regressions in GCC and
the linux kernel,” in Proc. Linux Conf. Au., Adelaide, Australia, Jan. 2004,
pp. 1–15.

[18] C. R. Myers, “Software systems as complex networks: Structure, function,
and evolvability of software collaboration graphs,” Phys. Rev. E, vol. 68,
no. 4, Oct. 2003, Art. no. 046116.

[19] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in a
large object-oriented software system,” IEEE Trans. Softw. Eng., vol. 33,
no. 10, pp. 687–708, Oct. 2007.

[20] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software,” ACM
Trans. Softw. Eng. Methodol., vol. 18, no. 1, Sep. 2008, Art. no. 2.

[21] Y. Gao, Z. Zheng, and F. Qin, “Analysis of linux kernel as a complex
network,” Chaos Solitons Fractals, vol. 69, pp. 246–252, Dec. 2014.

[22] H. Wang, Z. Chen, G. Xiao, and Z. Zheng, “Network of networks in Linux
operating system,” Physica A, vol. 447, pp. 520–526, Apr. 2016.

[23] G. Xiao, Z. Zheng, and H. Wang, “Evolution of Linux operating system
network,” Physica A, vol. 466, pp. 249–258, Jan. 2017.

[24] D. Cotroneo, R. Natella, and R. Pietrantuono, “Predicting aging-related
bugs using software complexity metrics,” Perform. Eval., vol. 70, no. 3,
pp. 163–178, Mar. 2013.

[25] G. Xiao, Z. Zheng, B. Yin, K. S. Trivedi, X. Du, and K. Cai, “Experience
report: Fault triggers in Linux operating system: From evolution perspec-
tive,” in Proc. IEEE Int. Symp. Softw. Rel. Eng., Toulouse, France, Oct.
2017, pp. 101–111.

[26] The Linux Kernel Archives. 2017. [Online]. Available: https://www.
kernel.org/

[27] D. G. Feitelson, “Perpetual development: A model of the Linux kernel life
cycle,” J. Syst. Softw, vol. 85, no. 4, pp. 859–875, Apr. 2012.

[28] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, Aug. 2011, Art. no. 10.

[29] F. Qin, Z. Zheng, X. Li, Y. Qiao, and K. S. Trivedi, “An empirical in-
vestigation of fault triggers in android operating system,” in Proc. IEEE
Pacific Rim Int. Symp. Dependable Comput., Christchurch, New Zealand,
Jan. 2017, pp. 135–144.

[30] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical inves-
tigation of fault types in space mission system software,” in Proc.
IEEE/IFIP Int. Conf. Dependable Syst. Netw., Chicago, IL, USA, Jul. 2010,
pp. 447–456.

[31] P. Larson, “Testing linux with the linux test project,” in Proc. Ottawa Linux
Symp., 2002, pp. 265–273.

[32] Z. B. Ratliff, D. R. Kuhn, R. N. Kacker, Y. Lei, and K. S. Trivedi, “The
relationship between software bug type and number of factors involved in
failures,” in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops, Ottawa,
Canada, Oct. 2016, pp. 119–124.

[33] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation and
availability assurance techniques,” Int. J. Syst. Assur. Eng. Manag., vol. 1,
no. 4, pp. 340–350, Dec. 2010.

https://lwn.net/Distributions/
https://lwn.net/Distributions/
https://bugzilla.kernel.org/
https://bugzilla.kernel.org/
https://scan.coverity.com/
https://scan.coverity.com/
https://www.kernel.org/

1382 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 4, DECEMBER 2019

[34] J. Corbet, “Detecting kernel memory leaks [LWN.net],” 2006. [Online].
Available: https://lwn.net/Articles/187979/

[35] D. Marjamäki, “Cppcheck: A tool for static c/c++ code analysis,” 2013.
[Online]. Available: http://cppcheck.sourceforge.net/

[36] H. B. Mann, “Nonparametric tests against trend,” Econometrica J. Econo-
metric Soc., vol. 13, no. 3, pp. 245–259, Jul. 1945.

[37] M. G. Kendall, Rank Correlation Methods. Oxford, U.K.: Griffin, 1948.
[38] R. C. Team et al., “R: A language and environment for statistical com-

puting,” 2018. [Online]. Available: https://www.r-project.org/
[39] L. A. Torrey, J. Coleman, and B. P. Miller, “A comparison of interactivity

in the Linux 2.6 scheduler and an MLFQ scheduler,” Softw.-Pract. Exp.,
vol. 37, no. 4, pp. 347–364, Apr. 2007.

[40] A. Agresti, Categorical Data Analysis, 2nd ed. Hoboken, NJ, USA: Wiley,
2003.

[41] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser, “Dingo: Taming device
drivers,” in Proc. ACM Eur. Conf. Comput. Syst., Apr. 2009, pp. 275–288.

[42] S. M. A. Shah, M. Morisio, and M. Torchiano, “An overview of software
defect density: A scoping study,” in Proc. Asia-Pacific Softw. Eng. Conf.,
Dec. 2012, pp. 406–415.

[43] M. Khattar, Y. Lamba, and A. Sureka, “Sarathi: Characterization study on
regression bugs and identification of regression bug inducing changes: A
case-study on Google Chromium project,” in Proc. ACM India Softw. Eng.
Conf., 2015, pp. 50–59.

[44] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski, “Evolution of
the Linux kernel variability model,” in Proc. 14th Int. Conf. Softw. Product
Lines: Going Beyond, 2010, pp. 136–150.

[45] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures. Boca Raton, FL, USA: CRC Press, 2003.

[46] D. E. Hinkle, W. Wiersma, and S. G. Jurs, Applied Statistics for the Be-
havioral Sciences, 5th ed. Boston, MA, USA: Houghton Mifflin, 2003.

[47] Z. Zheng and G. Xiao, “Evolution analysis of a UAV real-time operating
system from a network perspective,” Chin. J. Aeronaut., vol. 32, no. 1,
pp. 176–185, 2019.

[48] J. Pallant, SPSS Survival Manual: A Step by Step Guide to Data Analysis
Using SPSS, 4th ed. Berkshire, U.K.: McGraw-Hill, 2010.

[49] “I. S. 1044-2009, Standard Classification for Software Anomalies,” 2010.
[50] R. B. Grady, Practical Software Metrics for Project Management and

Process Improvement. Upper Saddle River, NJ, USA: Prentice-Hall, 1992.
[51] R. Chillarege et al., “Orthogonal defect classification—A concept for

in-process measurements,” IEEE Trans. Softw. Eng., vol. 18, no. 11,
pp. 943–956, Nov. 1992.

[52] E. Raymond, Ed., The New Hacker’s Dictionary. Cambridge, MA, USA:
MIT Press, 1991.

[53] S. Chandra and P. M. Chen, “Whither generic recovery from application
faults? a fault study using open-source software,” in Proc. IEEE Int. Conf.
Dependable Syst. Netw., Jun. 2000, pp. 97–106.

[54] D. Cotroneo, R. Pietrantuono, S. Russo, and K. Trivedi, “How do bugs
surface? A comprehensive study on the characteristics of software bugs
manifestation,” J. Syst. Softw, vol. 113, pp. 27–43, Mar. 2016.

[55] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software aging
analysis of the Linux operating system,” in Proc. IEEE Int. Symp. Softw.
Rel. Eng., San Jose, CA, USA, Nov. 2010, pp. 71–80.

[56] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A com-
prehensive study on real world concurrency bug characteristics,” ACM
Sigplan Notices, vol. 43, no. 3, pp. 329–339, 2008.

[57] D. Nir, S. Tyszberowicz, and A. Yehudai, “Locating regression bugs,” in
Proc. Springer Haifa Verification Conf., 2007, pp. 218–234.

[58] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial study
on the risk of software changes,” in Proc. ACM SIGSOFT Int. Symp. Found.
Softw. Eng., Cary, NC, USA, Nov. 2012, Art. no. 62.

[59] X. Zheng, D. Zeng, H. Li, and F. Wang, “Analyzing open-source software
systems as complex networks,” Physica A, vol. 387, no. 24, pp. 6190–6200,
Oct. 2008.

[60] J. A. Durães and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” IEEE Trans. Softw. Eng., vol. 32,
no. 11, pp. 849–867, Nov. 2006.

[61] J. Fonseca and M. Vieira, “Mapping software faults with web security
vulnerabilities,” in Proc. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
Jun. 2008, pp. 257–266.

[62] J. Fonseca, N. Seixas, M. Vieira, and H. S. Madeira, “Analysis of field data
on web security vulnerabilities,” IEEE Trans. Dependable Secur. Comput.,
vol. 11, no. 2, pp. 89–100, Mar./Apr. 2014.

[63] X. Du, Z. Zheng, G. Xiao, and B. Yin, “The automatic classification of
fault trigger based bug report,” in Proc. IEEE Int. Symp. Softw. Rel. Eng.
Workshops, Toulouse, France, Oct. 2017, pp. 259–265.

[64] G. Xiao, Z. Zheng, B. Jiang, and Y. Sui, “An empirical study of regres-
sion bug chains in Linux,” IEEE Trans. Rel., 2019. [Online]. Available:
https://doi.org/10.1109/TR.2019.2902171

[65] G. Fagiolo, “Clustering in complex directed networks,” Phys. Rev. E,
vol. 76, no. 2, Aug. 2007, Art. no. 026107.

[66] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Soc. Netw., vol. 1, no. 3, pp. 215–239, Jan. 1978.

Guanping Xiao (S’18) received the B.Sc. degree in
automation from the Nanjing University of Aeronau-
tics and Astronautics, Nanjing, China, in 2012 and
the M.Sc. degree in control theory and control engi-
neering from the Civil Aviation University of China,
Tianjin, China, in 2015. He is currently working to-
ward the Ph.D. degree in guidance, navigation, and
control with Beihang University, Beijing, China.

He was a Visiting Ph.D. Student with the School
of Software, University of Technology Sydney, Syd-
ney, Australia in 2018. His research interests include

software reliability and empirical software engineering.

Zheng Zheng (SM’18) received the Ph.D. degree
in computer software and theory from the Chinese
Academy of Sciences, Beijing, China, in 2006.

He is currently a Full Professor in Control Science
and Engineering with the School of Automation Sci-
ence and Electrical Engineering, Beihang University,
Beijing, China. In 2014, he was with the Department
of Electrical and Computer Engineering, Duke Uni-
versity, working as a Research Scholar. His research
interests include software dependability, unmanned
aerial vehicle path planning, artificial intelligence

applications, and software fault localization.

Beibei Yin received the Ph.D. degree in guidance,
navigation, and control from Beihang University, Bei-
jing, China, in 2010.

She has been a Lecturer in control science and en-
gineering with Beihang University since 2010. Her
main research interests include software testing, soft-
ware reliability, and software cybernetics.

Kishor S. Trivedi (LF’17) received the B.Tech. de-
gree in electrical engineering from the Indian Insti-
tute of Technology Mumbai, Mumbai, India, in 1968,
and the M.S. and Ph.D. degrees in computer science
from the University of Illinois at Urbana-Champaign,
Champaign, IL, USA, in 1972 and 1974, respectively.

He holds the Fitzgerald Hudson Chair with the
Department of Electrical and Computer Engineer-
ing, Duke University (Duke), Durham, NC, USA.
He has been with the Duke faculty since 1975. He
is the author of a well-known text entitled, Probabil-

ity and Statistics With Reliability, Queuing and Computer Science Applications
(Prentice-Hall, 1982); a thoroughly revised second edition (including its In-
dian edition) of this book has been published by Wiley. The book recently has
been translated into Chinese. He has also published two other books entitled,
Performance and Reliability Analysis of Computer Systems (Kluwer Academic
Publishers, 1996) and Queueing Networks and Markov Chains (Wiley, 1988).
His latest book, Reliability and Availability Engineering (Cambridge University
Press), was published in 2017. He has authored or coauthored more than 600
articles and has supervised 46 Ph.D. dissertations. His research interests include
reliability, availability, performance, and survivability of computer and commu-
nication systems and in software dependability.

Dr. Trivedi is a Golden Core Member of the IEEE Computer Society. He is the
recipient of IEEE Computer Society Technical Achievement Award for his re-
search on Software Aging and Rejuvenation. His h-index is 97. He works closely
with the industry in carrying our reliability/availability analysis, providing short
courses on reliability, availability, and in the development and dissemination of
software packages such as HARP, SHARPE, SREPT, and SPNP.

https://lwn.net/Articles/187979/

XIAO et al.: EMPIRICAL STUDY OF FAULT TRIGGERS IN THE LINUX OPERATING SYSTEM: AN EVOLUTIONARY PERSPECTIVE 1383

Xiaoting Du received the B.Sc. degree in automation
from Yantai University, Yantai, China, in 2014, and
the M.Sc. degree in guidance, navigation, and con-
trol in 2018 from Beihang University, Beijing, China,
where she is currently working toward the Ph.D. de-
gree in guidance, navigation, and control.

Her research interests include software reliability
and data mining.

Kai-Yuan Cai received the B.S., M.S., and Ph.D. de-
grees in control science and engineering from Bei-
hang University (Beijing University of Aervvonau-
tics and Astronautics), Beijing, China, in 1984, 1987,
and 1991, respectively.

He has been a Full Professor in control science
and engineering with the Beihang University since
1995. He is a Cheung Kong Scholar (Chair Profes-
sor), jointly appointed by the Ministry of Education
of China, and the Li Ka Shing Foundation of Hong
Kong in 1999. His main research interests include

software testing, software reliability, reliable flight control, and software cyber-
netics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

