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Abstract—Understanding and predicting types of bugs are of
practical importance for developers to improve the testing effi-
ciency and take appropriate steps to address bugs in software
releases. However, due to the complex conditions under which
faults manifest and the complexity of the classification rules, the
automatic classification of Mandelbugs is a difficult task. In this
article, we present a deep semantic information-based Mandelbug
classification method that combines a semantic model with a deep
learning classifier and makes use of both labeled and unlabeled bug
reports. By training the bug report semantic model on millions of
bug reports, each word in the text of a bug report is represented as
a word embedding that preserves the semantic relationship among
the words. Then, a convolutional neural network model is designed
to capture the high-level features of bug reports to obtain a more
accurate classification. Moreover, the effects of the semantic model
size and domain on the classification results are investigated, and
the quality of word embeddings is evaluated by analyzing several
important parameters.

Index Terms—Aging-related bug (ARB), automatic
classification, bug reports, deep learning, Mandelbug.

I. INTRODUCTION

A S SOFTWARE systems are becoming increasingly large
and complex, considerable efforts are being directed to-

ward software development and maintenance procedures [1],
[2]. It is well known that bugs inevitably appear in all stages of
the software lifecycle [3]. Hence, understanding the character-
istics of bug types is of practical interest to developers imple-
menting appropriate countermeasures, such as fault tolerance
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mechanisms or software verification and validation strategies,
in current and future software releases [4], [5].

However, Antoniol et al. [6] and Herzig et al. [7] found
that amounts of bug reports were mislabeled in bug tracking
systems, which could lead to negative consequences to bug
prediction models build on them. Herbold et al. [8] confirmed
the conclusion obtained by Herzig et al. [7] in their work. In
order to distinguish actual bugs from nonbugs, researchers have
conducted many studies [9]–[14]. For example, in [14], Herbold
et al. trained a new classification model for both titles and
descriptions, and then combined the results of both models. In
addition to predicting actual bugs, understanding the specific
types of bugs is also an important task. It is known that fix-
ing and removing bugs in the operational phase according to
the commits are considerably cost-expensive [15]. However,
if a failure cannot be reproduced, it is difficult to diagnose
and isolate the potential bugs. On the basis of whether a bug
can be consistently manifested under well-defined conditions,
researchers have classified bugs into Bohrbugs and Mandel-
bugs [16]. A Mandelbug does not consistently manifest; under
exact conditions, a Mandelbug sometimes (but not always) leads
to failure. By contrast, a Bohrbug manifests consistently under
a well-defined set of conditions. Accordingly, classification of
Mandelbugs is beneficial for understanding their characteristics
and, thus, help reproduce them [17], [18].

Unfortunately, the classification of Mandelbugs poses several
challenges. Due to the complex fault manifestation conditions
of Mandelbugs, users tend to comprehend Mandelbugs in dif-
ferent ways and consequently describe them in various styles
in bug reports. For example, consider two MEM bugs (MEM
bug, i.e., a type of bug that causes error to accumulate due
to improper memory management), for which the summaries
are “ext3 memory leaks (size-64 objects)” and “Memory usage
doubles after more than 20 hours of uptime.” The first reporter
directly stated the cause of the error, whereas the second reporter
simply described the phenomenon he/she observed for a bug
of the same type. Thus, the bug classification procedure is a
highly time-consuming process due to the varying styles of their
description.

In addition, the complexity of the classification rules presents
a major barrier for the classification of Mandelbugs. For exam-
ple, the subclasses of Mandelbugs include aging-related bugs
(ARBs) and nonaging-related Mandelbugs (NAMs), and each of
these subclasses can be further classified into several subtypes
with their own characteristics and corresponding classification
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rules [19]. Nevertheless, it is difficult for developers to accu-
rately classify the bug type without fully understanding the
user’s description in the bug report. For example, consider the
following summary of a bug report: “Framebuffer driver doesn’t
load on systems with>1 G memor (radeon, nvidia).” This report
contains the keyword “memor,” which can mislead developers to
classifying the bug as a memory-related bug. However, further
analysis of the semantics of the entire sentence reveals that the
report actually indicates that the failure is attributable to an ex-
ternal condition. Therefore, the contextual semantics contained
in each bug report is crucial for the automatic classification of
Mandelbugs.

A. Limitations and Insights

In summary, it is essential to learn the semantic information in
bug reports before classifying a Mandelbug. However, existing
automatic bug report classification methods in this field ignore
the semantic information in bug reports [20], [21]. The main
idea of these methods is to use the bag-of-words model [22] to
represent a bug report and to classify bug reports by machine
learning classifiers. However, the most significant features of the
bag-of-words model are that it ignores the contextual semantic
information contained in bug reports and uses the frequency
of words in bug reports as the classification feature. As a result,
existing methods may have limitations for the automatic classifi-
cation of Mandelbugs. In our previous work [23], we considered
semantic information, and several traditional machine learning
classifiers were used to classify bug reports. However, a common
limitation of traditional machine learning classifiers is that they
rely heavily on inputs and cannot learn features by themselves.

B. Our Solution

To address the aforementioned issues, we propose a Deep
Semantic Information-based Mandelbug classification method
(DEEPSIM) based on a skip-gram semantic model [24], [25].
Unlike the bag-of-words model, this model utilizes the seman-
tic features contained in bug reports by converting words and
phrases into word embeddings. After training the bug report
semantic model, a word embedding representation of each word
in each bug report is obtained. These word embeddings are then
used to represent each bug report as a two-dimensional matrix.
However, there are still correlated semantic relations among
different word embeddings in the matrix. In our method, we
embed the state-of-the-art convolutional neural network (CNN)
deep learning model as the classifier. Different from traditional
machine learning classifiers, a strong advantage of deep learning
models is their feature learning ability, i.e., deep learning models
can capture the higher level features of bug reports from word
embeddings and improve the classification accuracy. Finally, the
effectiveness of DEEPSIM is evaluated on 6557 bug reports from
four different open-source software projects [19], [26].

In summary, this article makes the following main
contributions.

1) We present DEEPSIM, a new Mandelbug classification
method that combines a semantic model and a deep

learning classifier to improve the Mandelbug classification
performance.

2) We extract the text information within bug reports and
train a bug report semantic model by learning the semantic
information from 2 038 675 bug reports.

3) We design a CNN model to classify Mandelbugs from
a multigranular perspective and compare it with existing
work. The results show that our method performs much
better than the methods developed in previous work.

4) We further explore the factors that affect the automatic
classification results, including the semantic model size
and domain, and the parameters that influence the quality
of word embeddings.

C. Organization

The remainder of this article is organized as follows.
Section II describes our DEEPSIM method. Section III presents
the experimental setup. Section IV discusses and analyzes the
experimental results, and Section V identifies the main threats to
validity. Section VI introduces related work. Finally, Section VII
concludes this article.

II. OUR APPROACH

In this section, we propose our DEEPSIM method. Fig. 1
shows the framework of DEEPSIM, which contains two parts:
data preparation and classification model training. In the data
preparation part, we first train the bug report semantic model
and then represent each bug report as a two-dimensional matrix
based on the word embeddings obtained by training the bug
report semantic model. Then, considering the impacts of the
class imbalance between the different bug types, a class imbal-
ance mitigation approach is designed and embedded into the
method. In the classification model training part, we construct
a bug report classifier based on a CNN model to predict the
type of bugs. Finally, multigranular classification of bug reports
is performed. In the rest part of this section, we introduce our
method in detail.

A. Bug Report Semantic Model Training

A word embedding is a real-valued vector representation of
words by embedding both semantic and syntactic meanings
obtained from large unlabeled corpus [27]. The word embedding
technique is widely used for natural language processing tasks,
such as text classification [28], question answering [29], and
machine translation [30]. In recent years, multiple models for
training word embeddings have been proposed [24], [31]–[33].
Word2vec is the most popular model [24], [25] and has achieved
state-of-the-art results on a range of linguistic tasks [34]. The
basis of word2vec is that words with similar meanings in a
given context exhibit close distances in the vector space. By
means of word2vec, words and sentences can be converted into
distributed vector representations (i.e., word embeddings). In
this study, semantic model training is carried out by using the
skip-gram model architecture of word2vec that has been used in
several software engineering tasks and has achieved impressive
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Fig. 1. Detailed structure of DEEPSIM.

performance [35], [36]. This model uses deep neural networks
to learn semantic information from the context of a corpus,
thereby producing a low-dimensional vector representation of
each word.

After collecting bug reports and extracting the text informa-
tion contained in these bug reports, we obtain a corpus of texts.
Then, we apply word2vec [37] with the skip-gram model on
the collected corpus to train the bug report semantic model. The
training objective of the skip-gram model is to predict the word
embedding representation of each word in its given context based
on the word embedding of the current word. More precisely,
the current word is used to predict the words in a range before
and after the current word. Using the skip-gram model, we
can convert words into distributed vectors, and the distances
among these vectors can be used to represent the semantic
similarity of words. For example, consider the following two
phrases: “...resource leak in file linux...” and “...memory leak in
linux....” In these two phrases, “resource leak” and “memory
leak” represent similar bug manifestations. Thus, “resource”
and “memory” are similar words. When mapped into the vector
space, the positions of the word embeddings for these two words
will be close to each other.

More specifically, given a word wt, the context of wt is
represented by Contextwt

. Consider a Bohrbug as an example,
where the summary text of the bug report is “serio driver in-
consistent use of names.” Fig. 2 shows the process of training
word embeddings using the skip-gram model when the current
word is wt = inconsistent. When wt = inconsistent is mapped
into the vector space, its corresponding word embedding is
denoted by vwt

. Thus, vwt
can be used to predict the word

Fig. 2. Sketch of the skip-gram model architecture.

embeddings for the C words to the left and the C words to
the right within its context. For example, let wt = inconsistent,
and suppose that C = 2. Then, the context of wt = inconsistent
is Contextwt

= {serio, driver, use, names}. During the training
process, the objective function f is maximized by optimizing the
word embedding vwt

and the parameters in the neural network
model. The objective function f is

f =
1

T

T∑

t=1

∑

wcεContextwt

logp(wc|wt) (1)
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where wc denotes a word in the context of the word wt and
T represents the total length of the word sequence (for exam-
ple, T = 5). In this equation, p(wc|wt) is the expression for
a multiclass classifier, i.e., softmax, that is used to predict the
word embedding representations. The calculation of p(wc|wt)
is defined as

p(wcεContextwt
|wt) =

exp{vTwc
· vwt

}
∑W

j=1 exp{vTwj
· vwt

} (2)

where vwt
is the word embedding of the current word wt, vwc

is
the word embedding of the context wordwc, andW is the length
of the vocabulary consisting of all words. The objective function
is designed based on the hypothesis that words that appear in
similar contexts have similar meanings [38]. During the training
of the semantic model, if wt and wc form a good word-context
pair, the objective function attempts to increase the value of
vTwc

· vwt
, whereas if wt and wc form a poor word-context pair,

the objective function attempts to decrease the value ofvTwc
· vwt

.
This also means that words sharing many contexts will be more
similar to each other.

B. Bug Report Representation

By training the bug report semantic model, a vocabulary is
obtained that consists of each word in the corpus and its corre-
sponding word embedding representation. By referencing this
vocabulary, we can obtain the word embedding of each word in
bug reports. Suppose there is a bug report consisting of m words
word1,word2, . . .,wordm, and assume each word is replaced
by a corresponding n-dimensional pretrained word embedding.
Then, the bug report can be represented as a two-dimensional
matrix denoted A ∈ Rm×n. Since the input of the deep learning
model requires a fixed shape and the length of the bug report
(i.e., the number of words contained in a bug report) is different,
we adjust the dimension of the matrix by padding [39] and set
the padding size p to the maximum number of words contained
in the bug report. For a report where the word length is not equal
to p, zero padding is used to increase its length. After this step,
we obtain the representation of each bug report A′ ∈ Rp×n.

C. Class Imbalance Mitigation

A strong problem of class imbalance among the different
types of bugs is present in bug report datasets. For example,
the number of Mandelbugs in software systems is usually much
fewer than that of Bohrbugs. One reason for this is that during the
development of software systems, a large number of Bohrbugs
are introduced. Another reason is that the activation and/or error
propagation conditions of Mandelbugs are more complex than
those of Bohrbugs, making the former more difficult for users
to discover. According to previous studies [26], the classes
of Bohrbugs and Mandelbugs are not balanced. For example,
the proportions of Bohrbugs and Mandelbugs in the Linux
kernel are 55.82% and 36.34%, respectively. In addition, for
ARBs and NAMs, i.e., the subtypes of Mandelbugs, the class
imbalance problem may be worse. The proportion of NAMs
is approximately seven times larger than that of ARBs in the
Linux kernel. To mitigate the impact of imbalanced data on

the classification accuracy, the synthetic minority oversampling
technique (SMOTE) is used in this article [40], [41].

The main idea of SMOTE is to oversample the instances in
the minority class by creating synthetic examples rather than by
replacement. Suppose that there are several instances from the
minority class; in this case, SMOTE synthesizes new minority
class instances by interpolating between these instances. The
interpolation method selects instances close to each other, draws
a line between the instances, and then inserts a new instance
along the line. In this article, the SMOTE algorithm is used
to guarantee that the number of the minority class samples
is equal to that of the majority class samples. And the im-
plementation of SMOTE is provided by the imbalanced-learn
Python library [42]. Taking the class imbalance problem be-
tween Bohrbugs and Mandelbugs as an example. Suppose there
are p Bohrbugs denoted as {b1, b2, . . ., bp} and q Mandelbugs
denoted as {m1,m2, . . .,mq}. Mandelbug is the minority class
of these two bug types (i.e., p > q). Then, the total amount
of oversampling p− q is set up to obtain an approximately
1:1 class distribution. First, a random instance mi is selected
from the Mandelbugs, and K of its nearest neighbors are found
{y1, y2, . . ., yk}. Then, synthetic Mandelbugs are created by
interpolating between mi and yj , where j is 1, 2, . . ., k. For this
purpose, we first calculate the difference between mi and yj ,
multiply the difference by a random number between 0 and 1,
and finally add the result to mi. The procedure is formulated as

mnew = mi + (yj −mi)× δ (3)

wheremi represents the matrix representation of the Mandelbug
under consideration, yj represents one of the K-nearest neigh-
bors for mi, mnew represents the new synthetic Mandelbug, and
δ is a random number in [0,1].

D. CNN Classifier

One of the main advantages of deep learning is feature
learning, which exploits the property that many natural signals
are compositional hierarchies, i.e., the higher level features of
the hierarchy are composed of lower level features [43]. After
obtaining the word embedding representation of each word by
training the bug report semantic model (see Section II-A), each
bug report is represented as a two-dimensional matrix (see
Section II-B). However, highly correlated semantic relations
remain among the different vectors in the matrix. To capture
the higher level features of bug reports from these vectors and
obtain a more accurate classification, a deep learning model (i.e.,
CNN) is designed in this section. Fig. 3 presents the overall
workflow of our CNN model. The first two layers of the model
are convolutional layers that are used to extract the features.
Each of these layers is followed by a tanh activation function
that is used to add nonlinear factors. Then, a pooling layer and
a dropout layer are sequentially added. The last layer is a flatten
layer that combines all of the features and outputs the value to a
softmax layer for classification.

The function of each convolutional layer is to extract higher
level features from the input matrix obtained in the data prepa-
ration part of DEEPSIM. Suppose there is a filter f , the length of
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Fig. 3. Workflow of our CNN model.

f is l, and f is parameterized with a weight matrix w. Since
each row of the input matrix represents a word, in the first
convolutional layer, the width of the filter is equal to n, which
denotes the dimension of the word embedding. Given a bug
report A′ ∈ Rp×n, a submatrix A′[j : j + l − 1] is applied to
all possible windows of words in A′. By repeatedly applying
the filter to A′, we can obtain the output o ∈ Rp−l+1, and the
formula is given as follows:

oj = w ·A′ [j : j + l − 1] (4)

where j is1, 2, . . ., p− l + 1. To extract more nonlinear features,
a bias term b ∈ R and an activation function tanh are added. As
a result, the feature map m ∈ Rp−l+1 for this filter is obtained

mj = tanh(oj + b). (5)

To further extract the association features in bug reports, we
add a second convolutional layer. Then, the function of the
pooling layer is to further extract the features generated from the
convolutional layers by aggregating the scores for each filter. In
our CNN model, we apply a max-over-time pooling operation
to each feature map. The idea is to choose the highest value
in each dimension of the vector to capture the most important
feature. Then, dropout is applied, which is a regularizer that is
used to prevent overfitting. Dropout is a regularization method
that stochastically sets the activation of the hidden units for each
training case to zero at the training time. Finally, a flatten layer is
added to form a vector representation as the input to the softmax
layer for classification.

E. Multigranular Classification of Bug Reports

To understand the features and characteristics of bugs in
software systems, researchers have attempted to analyze the
factors that trigger a fault and/or propagate a fault into a failure.
Generally, fault triggers are complex and not only include the
timing of inputs and operations but also involve the interactions
with other systems, leading to failures that are very difficult to
reproduce and requiring the use of specific strategies, such as
fault tolerance strategies that mask faults for their handling [44].

Based on the complexity of fault activation and/or error prop-
agation conditions, Grottke and Trivedi [16] divided bugs into
two categories: Bohrbugs and Mandelbugs. The definitions of
Bohrbugs and Mandelbugs are given as follows.

Borhbug: A bug that can be consistently manifested under
well-defined conditions. The activation and/or error propagation
of Bohrbugs is simple.

Mandelbug: A bug that cannot always be manifested even
under exact conditions. In contrast to Bohrbugs, the activation
and/or error propagation of Mandelbugs is complex.

The complexity of the triggering conditions may be caused
by the following: there is a time lag between the activation of
the fault and the occurrence of failure; some indirect factors may
play a role, such as the interaction of the software application
with the internal environment of the system; the timing of the
inputs and operations; and the relative order of inputs and
operations. Furthermore, according to whether a Mandelbug
will cause a software aging phenomenon (i.e., an increase in
the failure rate and/or performance degradation over time),
Mandelbugs are further classified into ARBs and NAMs [16].
Based on the various causes that give rise to the complexity of
fault triggering conditions [19], NAMs can be further classified
into TIMs, ENVs, LAGs, and SEQs. Furthermore, according to
the underlying causes of the software aging phenomenon, ARBs
can be classified into LOGs, MEMs, NUMs, STOs, and TOTs.
The definitions of these ARB and NAM subtypes are shown in
Table I.

Based on the aforementioned classification criterion, to con-
firm the category of each submitted bug report, in this article,
we automatically classify bug reports at four granularities. As
depicted in Fig. 4, prior to classifying the bugs based on fault
triggers, we first classify the collected bug reports into actual
bugs and nonbugs (i.e., bug reports that do not contain actual
bug descriptions). As reported in [6], not all bug reports contain
actual bugs, and therefore, bug reports that do not contain
an actual bug should be filtered out, i.e., requests for new
features or enhancements, documentation issues (e.g., missing
information, outdated documentation, or harmless warning out-
puts), compile-time issues (e.g., cmake errors or linking errors),
operator errors, and duplicate bug reports. Once these nonbug



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

TABLE I
DEFINITIONS OF THE SUBTYPES OF ARBS AND NAMS

Fig. 4. Multigranular classification of bug reports.

reports are excluded, all other reports are considered to contain
actual bugs. Then, considering the fault triggers, we classify
the actual bugs into Bohrbugs and Mandelbugs in the second
granularity. For the third granularity, Mandelbugs are further
divided into two subtypes, i.e., NAMs and ARBs. Finally, we
further divide ARBs and NAMs into their respective subtypes.
This multigranular classification of bug reports requires our
method to perform well in both the two-category (e.g., classi-
fication of Bohrbugs/Mandelbugs) and the multicategory (e.g.,
classification of ARB/NAM subtypes) classification tasks.

TABLE II
CORPUS USED FOR TRAINING THE SEMANTIC MODEL

TABLE III
DATASETS FOR CNN MODEL TRAINING AND TESTING

III. EXPERIMENTAL SETUP

To verify the effectiveness of the proposed DEEPSIM method,
we perform the automatic classification on datasets collected
from four open-source projects. The performance of DEEPSIM
is evaluated through two of the most frequently used measures
in the studies [45]–[47], i.e., accuracy and F-measure. Finally,
comparative experiments are conducted by comparing DEEPSIM
with the existing methods [20], [23]. Detailed introductions are
presented in the following.

A. Data Collection

Two parts of datasets are used in DEEPSIM. The first consists
of unlabeled bug reports used for training the bug report semantic
model, whereas the second consists of labeled bug reports that
are used to train and test the CNN model.

1) Data for Training the Bug Report Semantic Model: We
collect 2 038 675 bug reports from a bug tracking system
(i.e., Bugzilla) to train the bug report semantic model and the
summary, description, and comments of each bug report are ex-
tracted. The bug reports are distributed among nine projects, and
detailed information on the collected bug reports is provided in
Table II. The process of semantic model training is unsupervised
and bug reports in this part are unlabeled.

2) Data for Training and Testing the CNN Model: Table III
shows the datasets used for training and testing the CNN model.
Among them, Linux data1 is a dataset obtained from our pre-
vious work [26] that contains 5741 bug reports for the Linux
kernel. In [26], the classification of these bug reports is done
manually by examining the detailed information contained in
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bug reports. The information in bug reports includes the de-
scriptions of bugs submitted by reporters, comments, additional
files (for example, patches for correcting bugs) and external
links provided for further information, such as Git commit
IDs. The authors carefully cross-checked the results to reduce
possible misclassification and inspection mistakes. The other
four datasets are taken from Cotroneo et al. [19] and include
267 bug reports of Linux system, 209 bug reports of MySQL,
141 bug reports of HTTPD, and 199 bug reports of AXIS.

We publicly provide these two dataset parts at https://github.
com/xiaotingdu/DeepSIM.

B. Data Preprocessing

For each bug report, we preprocess its texts (i.e., summary,
description, and comments) in three steps: word tokenization,
stop-word removal, and lemmatization.

Word tokenization is the most basic step of text preprocessing.
The text is first divided into a stream of words or other mean-
ingful elements. We then remove all numbers and punctuation
marks that appear in the text and replace other nonalphabetic
characters, such as “#,” “∗,” and “&,” with spaces. Then, the
remaining words are extracted from the bug report text. For
example, given the report “Kernel hangs when APIC/ACPI
enabled,” after word tokenization, we obtain [“kernel,” “hangs,”
“when,” “apic,” “acpi,” “enabled”].

Stop-word removal accounts for the fact that many of the most
frequently used words in English are useless for information
retrieval and text mining. Such words are called stop words,
i.e., words that are frequently used but contain no information
regardless of the bug type, such as “and,” “the,” and “to.” For
example, for the description “Changing the CPU frequency
using CPUFREQ hangs the kernel,” the word “the” is removed in
this step. The removal of stop words is an important step in text
preprocessing for eliminating unimportant information [48].

Lemmatization is the process of finding the canonical form
of a word. The results obtained after lemmatization are mean-
ingful and valid words in the vocabulary. For example, the
word “aliases” in the bug description “broken module aliases in
ieee1394 drivers” is transformed into its standard form “alias”
after lemmatization. This operation is also used in text mining
and many other linguistic fields [49]. All of these operations are
conducted by employing the natural language toolkit [50].

C. Evaluation Metrics

In our experiments, we use the train_test_split function in
sklearn to randomly split the labeled bug reports used for eval-
uating our CNN model: 80% of the bug reports are used as
the training set and 20% are used as the test set. This whole
process is repeated 1000 times, and the average results across all
1000 iterations are recorded. We use accuracy and F-measure to
evaluate the performance of DEEPSIM. Among them, accuracy
is calculated as the proportion of correctly classified bug reports
relative to the total number of bug reports [51]. It can be used
to access the predictive power of an algorithm. In addition to
accuracy, F-measure is another popular measure [52]. It gives a
good overall picture of predictive performance. The higher the
F-measure is, the better the prediction performance represents.

In the following, we briefly introduce their definitions. We
note that TP denotes true positive, FP denotes false positive, FN
denotes false negative, and TN denotes true negative.

Accuracy: Accuracy is calculated as the proportion of the
instances correctly predicted relative to all instances and is
defined as

Accuracy =
TN + TP

TP + TN + FP + FN
. (6)

F-measure: The F-measure is a composite metric that com-
bines both precision and recall. It can be used to evaluate whether
an increase in precision outweighs a reduction in recall. This
metric is defined as

F-measure =
TP

TP + 0.5 ∗ (FP + FN)
. (7)

D. Comparison Methods

In this section, we introduce the methods used for the com-
parison with the proposed method. In our previous work [23],
seven bug report classification methods were proposed based on
traditional machine learning classifiers to classify bug reports at
four granularities. In Xia’s work [20], a method named USESB

was proposed to classify bugs into Bohrbugs and Mandelbugs.
We briefly describe each of these methods below.

1) Logistic Regression (LR) Based Method: This method
classifies bug reports based on an LR classifier. An LR classifier
uses linear models to perform the classification and has been
used for text classification for many years. Compared with other
linear classification methods, this method exhibits attractive
classification performance [53].

2) Stochastic Gradient Descent (SGD) Based Method: This
method classifies bug reports based on the SGD classifier. SGD is
a very simple and effective method for fitting linear models [53],
such as the support vector machine (SVM) and LR models. The
model fitted here is an SVM model. Such models usually have
good performance when dealing with large data volumes and
large quantities of features.

3) Gaussian Naive Bayes (GNB) Based Method: This
method classifies bug reports based on the GNB classifier. Naive
Bayes algorithms are supervised learning algorithms [53]. Based
on Bayes’ theorem and the assumption of strong independence
between each pair of features, the probability that a given in-
stance belongs to a certain category is calculated.

4) Decision Tree Classifier (DTC) Based Method: This
method classifies bug reports based on the DTC. The goal of
a decision tree is to establish a model for predicting the values
of the target variables by learning simple decision rules derived
from the data characteristics [53].

5) Linear Discriminant Analysis (LDA) Based Method: This
method classifies bug reports based on the LDA classifier. LDA
offers closed-form solutions that can be easily calculated [53].
This method maximizes the ratio of the between-class variance
to the within-class variance in any given dataset to ensure
maximum separability and reasonable classification accuracy.

6) Random Forest Classifier (RFC) Based Method: This
method classifies bug reports based on the RFC. The random
forest approach is an integrated learning method based on ran-
dom decision trees [53]. This method integrates multiple trees

https://github.com/xiaotingdu/DeepSIM
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TABLE IV
RESULTS OF BUG/NONBUG CLASSIFICATION ON LINUX DATA1

based on ensemble learning and provides information about the
importance of each variable for the classification task.

7) Gradient Boosting Classifier (GBC) Based Method: The
method classifies bug reports based on the GBC. Gradient tree
boosting is an ensemble algorithm motivated by the possibility
of combining several weak models to produce a more powerful
ensemble [53]. This method constructs models in a phased
manner and generalizes them by permitting the optimization
of arbitrary differential loss functions.

8) USESB: This method was proposed by Xia et al. [20]
to automatically classify bug reports into Bohrbugs and Man-
delbugs, i.e., the second granular classification in this article.
USESB takes the appearance of word tokens as the feature of
bug reports. If a word token appears in a bug report, it is labeled 1;
otherwise, it is labeled 0. To reduce the number of features, the
authors proposed a fuzzy set-based feature selection algorithm
named USES. Then, they used the naive Bayes multinomial
approach as the classifier after they leveraged USES to select
the words and denoted the combination of the multinomial naive
Bayes approach and USES as USESB . To compare DEEPSIM
with USESB , we use the same datasets as [20], i.e., Linux data2,
MySQL, HTTPD, and AXIS, as shown in Table III.

IV. EVALUATION AND ANALYSIS

A. RQ1: How Does DEEPSIM Perform in Mandelbug
Classification?

This section presents the bug report classification results at
four granularities and evaluates our method through a compari-
son with the eight methods described in Section III-D.

1) Granularity 1—Bugs and Nonbugs: In this section,
we analyze the experimental results at the first granularity,
i.e., classifying all bug reports into actual bugs and nonbugs.
Table IV shows the automatic bug/nonbug classification results
obtained by DEEPSIM and seven comparison methods that
we have used in our previous work [23]. From Table IV, we
observe that compared with the traditional machine learning
classifiers, the performance of DEEPSIM on both accuracy
and the F-measure is improved. Among seven traditional
machine learning classifiers, LDA performs best in the task of
classifying bug reports into bugs and nonbugs. The classification
accuracy obtained by DEEPSIM is 0.897, which constitutes an
improvement of 7.55% over the accuracy obtained by LDA

TABLE V
RESULTS OF BOHRBUG/MANDELBUG CLASSIFICATION ON LINUX DATA1

TABLE VI
COMPARISON WITH THE CLASSIFICATION RESULTS OF USESB [20]

classifier (i.e., 0.834). In addition, the F-measure obtained
by DEEPSIM is 0.897, 5.79% higher than the F-measure
obtained by the LDA classifier (i.e., 0.848).

2) Granularity 2—Bohrbugs and Mandelbugs: In this sec-
tion, we analyze the experimental results at the second granular-
ity, i.e., the classification of actual bugs into Bohrbugs and Man-
delbugs. The results are presented in Table V. According to the
results, the accuracy and F-measure obtained by DEEPSIM are
0.751 and 0.752, respectively. Additionally, the GBC classifier
performs best among all the seven traditional machine learning
classifiers. The accuracy and F-measure obtained by GBC are
0.691 and 0.703, respectively. As a result, the improvements in
accuracy and the F-measure by DEEPSIM are 8.68% and 6.97%,
respectively.

To further evaluate our DEEPSIM method, we use the same
datasets (i.e., Linux data2, MySQL, HTTPD, and AXIS) utilized
for USESB [20] described in Section III-D. Table VI presents
the comparison results. On average, DEEPSIM improves the
Mandelbug F-measure, Bohrbug F-measure, and accuracy by
81.02%, 5.25%, and 14.15%, respectively, compared to USESB .
In particular, the classification results on projects HTTPD and
AXIS are significantly improved. Specifically, the F-measure
values achieved by DEEPSIM for Mandelbugs in HTTPD and
AXIS are improved by 154.13% and 228.52%, respectively,
compared with USESB . Similarly, the F-measure values of our
method for Bohrbugs are increased by 9.06% and 8.06% for
HTTPD and AXIS, respectively. Moreover, the accuracy values
for the HTTPD and AXIS projects are improved by 21.09% and
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TABLE VII
RESULTS OF THE ARB/NAM CLASSIFICATION ON LINUX DATA1

TABLE VIII
RESULTS OF THE ARB SUBTYPE CLASSIFICATION ON LINUX DATA1

17.39%, respectively. In addition, the results of the Wilcoxon
signed-rank test at a significance level of α = 0.05 indicate that
the classification results obtained by DEEPSIM are significantly
better than those obtained by USESB .

3) Granularity 3—ARBs and NAMs: In this section, we an-
alyze the experimental results at the third granularity, i.e., clas-
sifying Mandelbugs into ARBs and NAMs. An examination of
the results in Table VII shows that DEEPSIM achieves better
performance than the traditional machine learning classifiers.
The accuracy obtained by DEEPSIM is 0.945, which is 7.14%
higher than the accuracy obtained by the best machine learn-
ing classifier (i.e., 0.882). At the same time, the F-measure
obtained by DEEPSIM (i.e., 0.945) is 3.96% higher than the best
F-measure obtained by traditional machine learning classifiers
(i.e., 0.909).

4) Granularity 4—Subtypes of ARBs and NAMs: In this sec-
tion, we analyze the experimental classification results at the
fourth level of granularity for ARB subtypes and NAM subtypes.

a) Automatic classification of ARB subtypes: As stated in
Section II-E, ARBs can be further classified into MEMs, STOs,
LOGs, NUMs, and TOTs according to the root causes of the soft-
ware aging phenomenon. The automatic classification results are
presented in Table VIII. DEEPSIM significantly outperforms the
traditional machine learning classifiers for both accuracy and the
F-measure. The accuracy obtained by DEEPSIM is 0.954, which
is 22.15% higher than the best accuracy obtained by traditional
machine learning classifiers (i.e., 0.781 obtained by the GNB

TABLE IX
RESULTS OF THE NAM SUBTYPE CLASSIFICATION ON LINUX DATA1

classifier). Likewise, the F-measure obtained by DEEPSIM is
0.948, 27.42% higher than the best F-measure obtained by
traditional machine learning classifiers (i.e., 0.744 obtained by
the GNB classifier).

b) Automatic classification of NAM subtypes: Based on
the different types of the complexity of their fault triggering
conditions, NAMs can be further divided into four categories of
ENVs, LAGs, TIMs, and SEQs. The corresponding automatic
classification results are shown in Table IX. Compared with the
best results obtained by the seven traditional machine learning
classifiers, DEEPSIM improves the accuracy from 0.587 to 0.670,
corresponding to an increase of 14.14% and improves the F-
measure from 0.592 to 0.667, obtaining an increase of 12.67%.

To summarize, our DEEPSIM method performs better than all
of the seven comparison methods we used in previous work
at all four granularities. In addition, DEEPSIM outperforms
USESB , which further confirms the effectiveness of DEEPSIM
in classifying Mandelbugs.

B. RQ2: How Do the Size and the Domain of the Semantic
Model Influence DEEPSIM?

In this section, we study the impacts of the semantic model
on the classification results. First, we study the effect of the
semantic model size, i.e., the effect of training semantic models
by using corpora with different numbers of bug reports. Second,
we study the influence of the semantic model domain, i.e., the
influence of using corpora originating from different domains to
train the semantic model.

1) Impact of the Model Size: In our work, a total of 2 038 675
bug reports are collected for semantic model training, as de-
scribed in Table II. We randomly select a certain number of these
bug reports to construct a corpus for semantic model training
and continuously increase the number of bug reports included
in this corpus. After obtaining semantic models of different sizes
in this manner, we analyze the impact of the model size on the
classification results.

The experimental results are illustrated in Fig. 5. For all eight
methods (i.e., the proposed DEEPSIM method and the seven tra-
ditional machine learning methods), as the size of the semantic
model increases, the accuracy and F-measure both increase. We
further confirm these results by implementing Mann-Kendall
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Fig. 5. Influence of the semantic model size on the Bohrbug/Mandelbug classification results obtained using the (a) DEEPSIM, (b) SGD, (c) LR, (d) GNB,
(e) GBC, (f) DTC, (g) RFC, and (h) LDA methods.

TABLE X
RESULTS OF MANN–KENDALL TREND DETECTION FOR FIG. 5

trend detection, as shown in Table X. The Mann–Kendall results
indicate that for a significance level of α = 0.05, the increasing
trends of the classification results with respect to the model size
are all statistically significant. In addition, Fig. 5 demonstrates

TABLE XI
DETAILS OF OUR SEMANTIC MODEL AND OTHER PRETRAINED

SEMANTIC MODELS

that the classification results initially rise rapidly, i.e., when the
number of bug reports in the training corpus is smaller than
100 000. Then, as the size of the corpus continues to increase,
the rate of increase gradually decreases. This is because as the
size of the corpus increases, the available semantic information
is almost completely learned, and the words needed for the
classification process gradually become saturated. Thus, the
rate of improvement in the classification results slows down.
However, the overall trend continues to rise, implying that for
the classification of Bohrbugs/Mandelbugs, increasing the size
of the semantic model is an effective approach to improve the
classification results.

2) Impact of the Model Domain: In this section, we down-
load the pretrained Google News and Wiki English semantic
models to execute a comparison with our trained bug report
semantic model. The details of these three models are shown in
Table XI. In this table, the column entitled “# of Words” reports
the number of words contained in each model vocabulary, and
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Fig. 6. Influence of the semantic model domain on the Bohrbug/Mandelbug classification results obtained using the (a) DEEPSIM, (b) SGD, (c) LR, (d) GNB,
(e) GBC, (f) DTC, (g) RFC, and (h) LDA methods.

the column entitled “Size” indicates the size of each model.
Bohrbug/Mandelbug classification experiments are performed
in this section.

The classification results are presented in Fig. 6. Although
our trained bug report model has a minimal size, it performs
better than the Google News model and the Wiki English model.
For all eight methods, the bug report model yields the best clas-
sification results in terms of both accuracy and the F-measure.
Thus, the results presented in Fig. 6 indicate that the domain
of the corpus used to train the semantic model influences the
Bohrbug/Mandelbug classification results. This finding implies
that using a semantic model whose domain is more closely
related to the data to be classified can lead to superior results.

C. RQ3: What Impact Does the Parameter Setting of Word
Embedding Have on DEEPSIM?

When training the skip-gram model, we consider various
important parameters that can affect the quality of the word
embeddings, including the word frequency threshold, the vector
dimensionality, and the context window.

Among these parameters, the word frequency threshold spec-
ifies the lowest frequency at which a word may appear. If
the number of occurrences of a word is below the minimum
frequency setting, then that word is discarded. If an appropriate
word frequency threshold is chosen, low-frequency words that
will otherwise interfere with the classification will be removed

while useful information will be retained. The context window
refers to the window used to train the semantic model. For a
context window of n, the positional relationships between the
current word and both the n words to the left and the n words
to the right within its context are considered. The vector dimen-
sionality determines the number of dimensions of the vector
representing each word that is obtained through semantic model
training. If the vector dimensionality is too small, the quality of
the model will not be sufficient. However, an excessively large
value will make the training process highly time-consuming.

Based on the aforementioned considerations and guided by
the parameter settings used in other studies [35], [54]–[56],
we perform a series of comparative experiments to explore the
variations in following three parameters.

1) Word Frequency: We vary the word frequency threshold
setting from 1 to 6 and train six different semantic models
with various word frequency threshold values. Then, we
classify the bug reports based on these semantic models.
Table XII shows that the classification accuracy achieves
the highest score when the word frequency threshold is set
to 5.

2) Context Window: To establish the context window size, six
sets of experiments are performed, and the context window
values are varied from 3 to 8. As shown in Table XII, when
the context window is set to 5, the classification accuracy
has the highest score.
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TABLE XII
COMPARISON OF DIFFERENT PARAMETER SETTINGS ON THE BUG/NONBUG

CLASSIFICATION

TABLE XIII
EXAMPLES OF SIMILAR WORDS ACCORDING TO DIFFERENT SIMILARITY

METRICS

3) Vector Dimensionality: We limit the number of vector
dimensions to between 50 and 500, and we perform six
comparative experiments with the vector dimensionality
set to 50, 100, 200, 300, 400, and 500. The results in
Table XII show that vector dimensionality has a significant
impact on the experimental results. As the dimensionality
increases, the classification accuracy improves. However,
the dimensionality cannot be increased indefinitely be-
cause this will inevitably downgrade the experimental
efficiency.

Based on the experimental results, in the design of DEEPSIM,
we set both the word frequency threshold and the value of the
context window to 5 and set the vector dimension to 500.

By training the bug report semantic model, we can obtain
the word embedding representation of each word, and the dis-
tance between vectors should be able to indicate the semantic
similarities between words. To evaluate the quality of the word
embeddings obtained by training the bug report semantic model,
we use three distance metrics, namely, the Manhattan distance,
the cosine distance, and the Euclidean distance, all of which are
commonly used in machine learning [57].

According to these similarity metrics, we identify the words
that are most similar to “bug” and “memory,” as shown in
Table XIII. Note that the words in each column are arranged
in order of decreasing similarity. An examination of the data
presented in Table XIII shows that most similar words are
synonyms. For example, the word “bug” resembles “issue,”
“problem,” and “defect.” Similarly, “memory” is close to “ram”
and “diskspace.” Even if a user or developer misspells a word,
this will not affect the learning of the semantic relationships.
For example, sometimes “problem” is mistakenly spelled as
“probelm” or “probem,” and “memory” may be mistakenly
spelled as “memeory” or “memmory.” Our trained semantic

model can still recognize the semantic information contained
in these misspelled words. These findings indicate that the
generated word embeddings can effectively represent the se-
mantic relationships contained in the text of bug reports.

V. THREATS TO VALIDITY

A. Threats to Construct Validity

The threats to construct validity depend on the datasets used in
this study. Since bug reports are written by users and developers,
the quality of the word embeddings may be affected by the texts
within the bug reports. Moreover, the accuracy and completeness
of the summary, description, and comment sections of the bug
reports may influence the quality of the word embeddings. To
mitigate the impact of this threat, we use more than two million
bug reports to train the semantic model. Although our trained
word embeddings can reliably represent the semantic relations
among words, their quality could be further improved by using
a corpus of larger size and higher quality.

B. Threats to Internal Validity

The threats to internal validity in this study involve factors that
may affect our experimental results. To reduce these internal
threats, we repeat each experiment 1000 times to reduce the
effects of random errors. In addition, the quality and consistency
of manual classification results of bug reports are threats to
internal validity. The authors of our previous work [26] sepa-
rately took manual classification of all bug reports to reduce the
threat. During the process, cross-checks were performed and
conflicting cases were eliminated through discussion to reach a
consensus. Besides, several tools were utilized to help ensure the
correctness and consistency of the results. However, no matter
how serious the authors are, we admit that the possibility of
classification mistakes cannot be completely avoided.

C. Threats to External Validity

Threats of this type are related to the generalizability of the
obtained results. We validate the performance of DEEPSIM on
6557 bug reports collected from four popular open-source soft-
ware systems that are frequently investigated in related studies,
including the Linux, MySQL, AXIS, and HTTPD. However,
although the four software systems have been widely used and
each one is a representative of a category, the evaluation results
of DEEPSIM on them may be different from those on some
other systems. Besides, the interpretability of CNN is also one
of the threats to external effectiveness, even if it has achieved
human-level performance in various fields. Due to the black-box
nature of deep learning models, it is difficult to explain their
decision-making processes. The problem may undermine the
confidence on the classification results of our proposed tech-
nique. In recent years, researchers have proposed many methods
and tried to explain the deep learning process [58]–[60], which
may alleviate the problem to some extent.
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VI. RELATED WORK

A. Empirical Study of Bug Types

Antoniol et al. [6] studied 1800 bug reports and classified
them into bugs and nonbugs. Similarly, Herzig et al. [7] manually
examined more than 7000 issues from five open-source projects
and found that 33.8% of all bug reports were misclassified.
Herbold et al. [8] studied the negative impact of mislabeling
bugs by performing an extensive empirical analysis of the bug
labels created with the SZZ algorithm. In addition to classify
bug reports into actual bugs and nonbugs, the classification
of specific bug types also has practical implications in the
process of software development [61]–[63]. Previous studies
have proposed various bug taxonomies from different perspec-
tives [64]–[68]. The earliest and most popular bug classification
taxonomy was the ODC scheme [69], which was introduced by
IBM. This taxonomy includes 12 categories and classifies bugs
in terms of the involved program structure. Another popular
bug classification scheme was the HP scheme [70], which aims
at deriving process improvement proposals. In [70], bugs were
characterized by three attributes, including “origin,” “mode,”
and “type.” Tan et al. [71] studied 2060 bugs in Linux kernel,
Mozilla and Apache from three dimensions, including root
causes, impacts, and components.

The criterion used in this article is related to fault triggers
and reproducibility, which was first discussed by Gray [70]. In
this work, Gray classified bugs into Bohrbugs and Heisenbugs.
Here, Bohrbugs are a type of deterministic or hard bugs that
are easy to reproduce, whereas Heisenbugs are a type of elusive
or soft bugs that behave uncertainly. Grottke and Trivedi [16]
updated the nomenclature of Heisenbugs and classified bugs
into Bohrbugs and Mandelbugs, where the term “Mandel-
bug” was defined as the antonym of “Bohrbug.” According
to this definition, a Mandelbug is a type of “complex” bug
that is difficult to detect, isolate, and correct during the testing
process.

Several studies have focused on understanding the character-
istics of Mandelbugs, including the proportions of Mandelbugs
in different software systems [72], the prediction of Mandel-
bug locations [73], and recovery from Mandelbugs [44]. There
are two subcategories of Mandelbugs: ARBs and NAMs [16].
ARBs, which were first defined by Huang et al. [74], can
lead to an increase in the failure rate and/or a decrease in the
performance of a software system. For an ARB, the probability
of failure increases with the system’s run time, but proactive
measures can be taken to clean up the system’s internal con-
ditions and, thus, reduce the chance of failure; such measures
are referred to as “software rejuvenation” [17]. Based on the
aforementioned classification, Cotroneo et al. [19] presented
a more detailed classification of bug types and analyzed the
proportions of bugs in four open-source software systems, i.e.,
Linux, MySQL, HTTPD, and AXIS.

B. Automatic Classification of Bug Reports

Amounts of approaches were proposed to automatically clas-
sify bug reports into actual bugs and nonbugs [9], [10], [12]–[14],

[75]–[78]. In [9], [12], and [13], term frequency matrix was built
for each bug report and used as input of classifiers. Limsettho et
al. [75] and Pingclasai et al. [79] proposed to derive features via
topic-modeling. Herbold et al. [14] trained different models for
the title and description of the bug report to investigate whether
the prediction results of bug types can be improved by consid-
ering the structural difference between them. Compared with
these studies, except for the classification of bugs and nonbugs,
we also classify bugs into more detailed types according to the
fault triggering conditions.

Frattini et al. [21] automatically classified bug reports into
workload-dependent and environment-dependent bugs in ac-
cordance with their reproducibility. Xia et al. [20] devel-
oped a fuzzy-set-based feature selection algorithm for auto-
matically classifying Bohrbugs/Mandelbugs. The difference be-
tween these two studies and this work is that the models used for
textual representation in these previous studies did not consider
the semantic relationships contained in the bug report texts. In
our previous work [23], an automatic classification framework
based on word2vec was proposed to classify Mandelbugs. In that
work, several traditional machine learning classifiers were used
for classification. Traditional machine learning classifiers have
a common limitation, i.e., their performance relies heavily on
input features, which means that they cannot learn higher level
features by themselves. However, highly correlated semantic
relations still exist among different word embeddings. To com-
pensate for this limitation and learn the higher level features of
bug reports, we propose the DEEPSIM method in this article to
combine the semantic model with a deep learning classifier. In
addition, to mitigate the class imbalance problem in the data,
SMOTE is also introduced.

VII. CONCLUSION

In this article, we proposed DEEPSIM, an automatic Mandel-
bug classification method that combines a semantic model with
a deep learning classifier. In DEEPSIM, a bug report semantic
model was trained based on millions of bug reports to learn
semantic relations among words. With the trained model, each
word in the bug reports was represented as a word embedding. In
addition, a CNN model was designed to capture the higher level
features in the bug reports from word embeddings. We evaluated
DEEPSIM on a total of 6557 bug reports and compared the results
with those of existing studies. The experimental results showed
that our method was effective for the classification of Mandel-
bugs and performed better than the existing methods for this
purpose. Moreover, we investigated the impacts of the semantic
model and word embedding parameters on the classification
results.

In the future, we plan to study methods for classifying bugs in
machine learning systems, such as the TensorFlow framework.
According to our research [80], the Mandelbugs in machine
learning frameworks have different characteristics from those
in traditional software systems. Thus, how to improve the Man-
delbug classification accuracy for this kind of system is an
important topic. In addition, handling all-in-one classification
of bug reports is an important task, and specific strategies need
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to be developed to deal with the extremely imbalanced multiclass
problem that existed in bug data. This will be our work in the
near future.
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